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Studies were conducted to evaluate the effects of plant health protectants Pageant
(pyraclobstrobin + boscalid), Regalia (extract of Reynoutria sachalinensis) and MBI-501
(an anti-transpirant) on drought, heat and cold tolerance. To measure effects on drought
tolerance, Pageant, Regalia or MBI-501 were foliar applied to impatiens at four rates
(0.0%, 0.5%, 1.0%, and 1.5%) based on the label rates of 0.228 g-L'1 (Pageant), 10 mL-L"
(Regalia) and 2 mL-L" (MBI-501) and to tomato plants at two rates (0.0 and 1.0x)
based on the label rates of 0.559 g-L'1 (Pageant), 10 mL-L" (Regalia) and 2 mL-L" (MBI-
501) grown with different target substrate volumetric water contents (TVWC). Pageant
applied at the 1.0x rate to well-watered impatiens, had greater shoot dry weight compared
to water stressed plants. Regalia application increased root dry weight, leaf chlorophyll
content and photosynthetic rate of impatiens and tomato plants. However, results tended
to be in the higher TVWC (Pageant and Regalia) to moderately stressed conditions
(Regalia). To evaluate heat tolerance in Impatiens walleriana ‘Super Elfin XP White’

(impatiens), Pageant (0.228 g-L'l), Regalia (10 m-L™") or MBI-501 (2 mL-L™") were



applied prior to the heat event. Photosynthetic rate was less with impatiens exposed to
the heat event compared to plants not exposed to the heat event. However, there was no
indication Pageant, Regalia or MBI-501 improved heat tolerance. To evaluate heat
tolerance in Solanum lycopersicum ‘BHN 640’ (tomato) plants, Regalia was foliar
applied at the 1.0% rate at 24 h or 1 h before the heat event. There was no indication
Regalia improved heat tolerance. Fragaria *ananassa ‘Camarosa’ (strawberry) plants
were evaluated for chilling tolerance following application of Regalia at the 1.0% rate in a
growth chamber. Results indicated no increase in chilling tolerance of strawberry plants
compared to plants receiving no Regalia or chilling treatments. Citrus unshiu ‘Owari’
(satsuma) leaves were evaluated for freeze tolerance after application of Regalia at 1.0x
(10 mL-L") rate in a programmable ultra-low freezer. Results indicated no increased
freeze tolerance in satsuma leaves compared to leaves from plants receiving no Regalia

or freezing treatment.
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spray no freeze event [NSNF (leaves were sampled and kept at
15°C], no spray freeze event (NSF) and Regalia applied 24 h
1x =10 mL-L") before freeze event (24-hF). Freeze event was
conducted in a programmable freezer lowered at 2 °C-h™' and
held for 1 h before leaves were sampled at 2 (4°C), 5 (0°C), 8
(-4°C), 11 (-8°C), and 14 (-12°C). EL at each temperature and
fit to a regression model yielding the following equations:
NSNF, y =9.78 + 0.23temp + 0.02temp?; NSF, = -14.0 +
57.3*temp - 9.89*temp; 24-hF = 9.9+ 50.7temp - 7.70temp”
(254017000 TSRS 219
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CHAPTER 1
INTRODUCTION

A topic gaining popularity in agronomic and horticultural crop production is the
promotion of plant health and stimulation of plant immunity. At the American
Phytopathological Society meeting in 2009 one of the hot topic sessions was “The use of
fungicides to promote plant physiological benefits in crops” (American
Phytopathological Society, 2009). This was one of the first forums to discuss the
registration of strobilurin fungicides for uses other than disease management in crops and
opened the floor to other plant health protectants.

Strobilurins (conventional fungicides) have been shown to increase yields through
direct effects on photosynthetic efficiency and transpiration rate (BASF, 2009).
Additionally, an extract of giant knotweed (nonconventional fungicide) has been reported
to increase chlorophyll values, increase the activity of peroxidases, polyphenoloxidases,
and Phe ammonia-lyase (Daayf et al. 1997). Other plant protectants, such as
antitranspirant compounds, have been shown to increase water use efficiency in plants
through reduced transpiration (MacDonald et al., 2009).

Though it is known some fungicides stimulate growth and may improve plant
health (Balba, 2007), little research has evaluated these compounds for increasing

ornamental plant tolerance to cold, heat or drought.



Pyraclostrobin + boscalid (Pageant: BASF, Research Triangle Park, N.C.), an
extract of Reynoutria sachalinensis (Regalia: Marrone Bio Innovations, Inc., Davis, CA),
and an antitranspirant based on a long chain fatty alcohol (C8-C18) (MBI-501: Marrone
Bio Innovations, Inc., Davis, CA) were evaluated for increasing Citrus unshui ‘Owari’,
Fragaria xananassa ‘Camarosa’, Solanum lycopersicum ‘BHN 640°, and Impatiens
walleriana ‘Super Elfin XP White’ tolerance to cold, heat, or drought. The objectives of
this research were to:

1. Investigate the effect of plant protectant applications and timing, on overall health
of cold and heat sensitive plants.

2. Determine drought tolerance and water use efficiency of drought sensitive
ornamentals after applications of plant protectants.

3. Detect enzymatic activity in ornamental and specialty crops following plant
protectant application to determine the physiological processes leading to

increased plant immunity.



Literature Cited

American Phytopathological Society. 2009. Hot Topic: “The Use of Fungicides to
Promote Plant Physiological Benefits in Crops”. 6 December 2011.
<http://www.apsnet.org/ meetings/meetingarchives /2009 Annual/ program/
Pages/HotTopicSession.aspx.>.

Balba, H. 2007. Review of strobilurin fungicide chemicals. J. Environ. Sci. Heal. B.
42:441-451.

BASF. 2009. Headline® for Improved Plant Health. Technical Information Bulletin. 1
October 2009. <http://www2.basf.us/corporate/f500 story.html>.

Daayf, F., A. Schmitt, and R. Belanger. 1997. Evidence of phytoalexins in cucumber
leaves infected with powdery mildew following treatment with leaf extracts of
Reynoutria sachalinensis. Plant Physiol. 113:719-727.

MacDonald, M.T., R.R. Lada, A.R. Robinson, and J. Hoyle. 2009. Seed preconditioning
with natural and synthetic antioxidants induces drought tolerance in tomato
seedlings. HortScience 44:1323-1329.



CHAPTER 1II

LITERATURE REVIEW

Plant Stress

Water (drought) and temperature (cold or heat) are two of the major abiotic stress
factors affecting plant growth (Schulze et al., 2005). Some of the injury symptoms and
tolerance mechanisms associated with them are similar. For instance, plant water status
can be affected by drought and low temperatures through partial to complete dehydration
of plant cells (Schulze et al., 2005; Verslues et al., 2006). Drought conditions cause a
chain of events starting with a decreased soil water potential which limits water uptake by
the plant, eventually causing cell dehydration. Low temperatures cause extracellular ice
formation and, through plasmolysis, the water within the cell is lost resulting in a
dehydrated cell (Mengel et al., 2001; Verslues et al., 2006). Additionally, these
environmental stress factors have been linked to increased reactive oxygen species (ROS)
(Gulen and Eris, 2004). ROS are byproducts of plant metabolism and are vital for plant
growth, even though they are highly toxic due to their oxidative abilities (Robert et al.,
2009). Formation of ROS begins with the excitation of triplet ground state oxygen (O,)
to form singlet oxygen ('0,), or reduction of one electron to form superoxide radical

(0;), reduction of two electrons to form hydrogen peroxide (H,O,), or the reduction of

three electrons to form a hydroxyl radical (HO ) (Mittler, 2002). Chloroplasts,



mitochondria, plasma membrane and apoplastic space are all sources of ROS in plants
(Mittler et al., 2004; Rio et al., 2002; Robert et al., 2009). Since ROS are highly reactive,
plants have developed protective mechanisms against oxidative damage in the form of
antioxidant enzymes. These antioxidant enzymes, such as superoxide dismutase (SOD),
catalase (CAT), peroxidase (POX), ascorbate-peroxidase (APX), glutathione reductase
(GR) and glutathione-S-transferase (GST), scavenge the plant for excited oxygen species
caused by abiotic stress (Mittler et al., 2004; Wu and von Tiedemann, 2002; Zhang et al.,
2010).

Once a plant becomes stressed, normal growth and development ceases. The
ability to overcome such stress is referred to as stress tolerance (Luan, 2002). The level
to which a plant can tolerate stress depends upon the plant’s physiology and biochemistry
(Pagter et al., 2008a). For instance, Yamada et al. (2002) conducted a study with tropical
and subtropical species and reported that Saintpaulia leaves were seriously injured within
15 min, whereas orchid leaves exposed to -2 °C resulted in no injury (Yamada et al.,
2002). Furthermore, Hydrangea macrophylla stem hardiness is limited to -18 °C,
whereas H. paniculata ‘Grandiflora’ clones of different origin are hardy to -36°C to -37

°C (Pagter et al., 2008b).

Plant Health Protectants

Conventional Fungicide: Strobilurins

Strobilurins were first evaluated as natural products isolated from Strobilurus
tenacellus, Oudemansiella mucida, and Myxococcus fulvus (Bartlett et al., 2002).
Strobilurins have activity against the four major fungi groups (Ascomycetes,
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Basidiomycetes, Deuteromycetes and Oomycetes) and account for one-fifth of the
fungicide market (Sauter, 2007). As of 2007, there were nine strobilurin fungicides on
the market: kresoxim-methyl, azoxystrobin, metominostrobin, trifloxystrobin,
picoxystrobin, pyraclostrobin, fluoxastrobin, dimoxystrobin, and orysastrobin. Although
strobilurins were derived from natural substances, they are sold in synthetic forms due to
their highly photo-degradable nature (Balba, 2007).

Classified as complex III inhibitors, the strobilurins act as mitochondrial
respiration inhibitors (Sauter, 2007). The fungicide targets the electron transport chain in
the mitochondria of the fungus, specifically, the quinol oxidation site of the bc; complex
binding site (Balba, 2007), preventing electron transfer between the Q, site of
cytochrome b and cytochrome ¢, disrupting the production of ATP, and stopping all
respiration (Bartlett et al., 2002). In the plant, the fungicide is a translaminar type with
only limited translocation through the leaf. The target site in the plant is the electron
transport chain in the mitochondria. The fungicide inhibits mitochondrial respiration
triggering positive changes in the plant such as increased growth efficiency, increased

stress tolerance, and disease control (BASF, 2009).

Non-conventional Fungicide: Extract of Reynoutria sachalinensis

Extract of Reynoutria sachalinensis (giant knotweed), also known as Regalia, is
distributed by Marrone Bio Innovations as an organic fungicide with activity against
powdery mildew, gray mold, and blights (Marrone Bio Innovations, 2011). Regalia’s
indirect mode of action is seen through the increased production of phytoalexins which

strengthen the plant’s immune system (Konstantinidou-Doltsinis and Schmitt, 1998).



After a plant has been affected by a biotic or abiotic agent, phytoalexins (antimicrobial
compounds) are synthesized as a defense mechanism (Vasconsuelo and Boland, 2007).
Some of these phytoalexins are lytic enzymes, such as chitinases and glucanases,
oxidizing agents, cell wall lignifications, pathogenesis-related proteins, and transcripts of
unknown functions (Mert-Tiirk, 2002). Additionally, Regalia has been reported to
increase chlorophyll values and the activity of peroxidases, polyphenoloxidases, and Phe
ammonia-lyase (Daayf et al., 1997). Peroxidases, are involved in lignin polymerization,
cross-linkage of cell wall constituents, catabolism of auxin, formation of ROS and
defense against pathogenic organisms (Bakalovic et al., 2006). Lignin polymerization
provides rigidity and structural support to cell walls (Kérkonen and Koutaniemi, 2010).
Under water stress, plant species with more elastic cells have relatively no change in cell
water potential as water is removed; however, the more rigid a cell wall is, the greater the
loss in water potential with minimal loss in water. Therefore, the more rigid cell walls
are, the easier it is for water uptake without severe dehydration (Mengel et al., 2001).
Thus, if application of Regalia increases peroxidases, it could result in heightened lignin

polymerization and result in a more rigid cell wall, preventing extreme cell dehydration.

Antitranspirant: MBI-501

MBI-501 is a reflective type antitranspirant based on a long-chain fatty alcohol.
When sprayed on leaves, reflective anti-transpirants reflect back a portion of radiation,
decreasing leaf temperature and reducing transpiration (Goreta, et al., 2007; Patil and De,

1976). Although the mode of action for MBI-501 is not completely understood, reports



indicate a greater translocation of photosynthates and photosynthetic activity (personal

communication, Marrone Bio Innovations).

Cold Stress

In 2007, the southeastern U.S. had abnormally warm temperatures in the month of
March and April experienced record lows (NOAA, 2007). Due to the mild temperatures
in March, many ornamental plants throughout the southeast initiated bud break leading to
significant crop losses when the temperatures dropped below freezing in April. The
damage was so extensive the browning of vegetation could be seen by space satellites.
Under low temperatures, the ability of a plant to take up and conduct water is slowed,
resulting in plant stress (Bray, 1997). If crops acclimate to cooler temperatures and then
a heat event occurs, the cold acclimation is canceled and new growth is stimulated
(Ferguson, 1995). Once new growth is initiated, high temperatures can reduce the overall
flowering of cool season crops (Warner and Erwin, 2006) such as Viola xwittrockiana
Gams. (pansy) (Niu et al., 2000).

One of the major stress factors affecting plant growth and productivity is chilling
or freezing injury. Chilling injury occurs when temperatures are low, but not below
freezing (Zhang et al., 2009) and freeze injury occurs below 0°C (Jan et al., 2009).

Injury usually occurs with the formation of ice on the outside of the plant with ice
formation progressing into the plant cells through diffusion (Uemura and Steponkus,
1999). A plant’s response to cold stress depends upon its physiology and biochemistry
(Pagter et al., 2008a), which can be related to its origin (Jan et al., 2009). Temperate

region plants can increase their freezing tolerance when exposed to low non-freezing



temperatures, whereas tropical and subtropical species are more sensitive to chilling and

typically lack the ability to acclimate to cold temperatures (Jan et al., 2009).

Chilling and Freeze Injury

Chilling injury inhibits or slows growth, whereas freeze injury can cause
discoloration and/or death. The first signs of cold injury are seen in the cell’s inability to
increase membrane fluidity, causing membrane leakage (Verslues, et al., 2006). As
temperatures continue to decrease, injury gradually becomes more severe because of
extracellular ice formation due to the lower extracellular solute concentration compared
to the solute concentration inside the cell (Jan et al., 2009). When ice forms in the
extracellular spaces there is a drop in water potential outside the cell, which causes the
water from the cytoplasm to move through the plasma membrane by osmosis causing
cellular dehydration (Xin and Browse, 2000). Dehydration is a common injury symptom
associated with freeze injury in plants due to the formation of ice within the cell
membranes (Thomashow, 2001). This osmotic dehydration subsequently triggers a
response in the hexagonal II phase associated within the plasma membrane (Uemura et
al., 2006; Kawamura and Uemura, 2003). During this reaction, there is an increase in the
cryostability of the plasma membrane (Uemura et al., 2006) likely due to the
accumulation of cold-induced proteins (Uemura et al., 2006; Kawamura and Uemura
2003). Injury related to rapid freezing often occurs in the cell and is a result of rapid
temperature decrease. Moreover, intracellular ice formation causes puncture wounds in

the plasma membrane due to water expansion (Hoshino et al., 1999; Joiner, 1958.).



As temperature decreases, water from within the cell continues to move into the
extracellular spaces until total dehydration occurs. However, before total dehydration
occurs, equilibrium between the extracellular and intracellular spaces may be reached
(Yelenosky and Guy, 1989). Thus, damage may be limited and reversible with no injury
to the cell. Extent of damage is dependent upon exposure time, how quickly the
extracellular ice thaws, and the rigidity of the cell (Joiner, 1958). With highly elastic cell
walls, as compared to more rigid cells, there is a greater reduction in cell volume
therefore disrupting the protoplast as water moves back into the cell with warming
temperatures (Xin and Browse, 2000).

In many instances injury related to low temperatures may take several hours or
days before injury is evident. For instance, African violet leaves exposed to -2 °C were
seriously injured within 15 min, whereas mungbean seedlings exhibited only 30% injury

after 1 hour (Yamada et al., 2002).

Cold Acclimation

Many plant species have adopted cold acclimation mechanisms that allow them to
survive freezing or chilling temperatures with minimal damage (Xin and Browse, 2000).
Plants acclimate to cold temperatures naturally under shortened day lengths (Pagter et al.,
2008b; Xin and Browse, 2000) and repeated exposure to low temperatures (Jan et al.,
2009). During cold acclimation, plants respond by decreasing tissue water content and
accumulating soluble carbohydrates, amino acids, and proteins (Pagter et al., 2008a).
These compounds protect the cells from freezing and/or dehydration (Pagter, 2008a; Li et

al., 2004). Additionally, the lipid composition of the plasma membrane is altered thereby
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serving as a protective barrier against seeding of the supercooled cytosol by the

extracellular ice (Uemura and Steponkus, 1999).

Heat Stress

It is inarguable that high temperatures can reduce plant growth (Wise et al., 2004).
In 2007, the Intergovernmental Panel on Climate Change predicted an increase of 1.8 to
4.0 °C over the next 100 years (Xu et al., 2009). Subsequently, the higher temperatures
will increase atmospheric CO; concentrations, alter rainfall regimes, and indirectly affect
respiration and photosynthesis of crop species (Hedhly et al., 2008). These high
temperatures could cause a decline in photosynthesis due to increases in photorespiration,
resulting in heat stressed plants (Sharkey, 2005). Heat stress limits plant biomass
production and productivity through physiological and metabolic processes (Wahid et al.,
2007; Allakhverdiev et al., 2008). With the predicted temperature increases associated
with global warming, heat stress will become an increasingly important issue for crop
production (Asthir et al., 2009).

Wahid et al. (2007) defined heat stress as the plant’s response to a rise in
temperature (usually 10 to 15 °C above ambient, for an extended time) causing
irreversible damage to plant growth whereas, heat tolerance is the plant’s ability to
survive high temperatures. Furthermore, the extent of the damage and response of the
plant are dependent upon species and climatic zone, which may also determine the
threshold temperature. Threshold temperature refers to the low and high temperatures a
plant can tolerate and still experience normal growth (Wahid et al., 2007). High

temperatures causing heat stress can have a negative impact on growth and productivity,
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particularly in the warm summer months and in temperate climatic regions (Huang and
Xu, 2008). Temperate plants usually have lower threshold temperatures compared to
tropical plants. Wheat, a temperate crop, experiences a 4% decrease in yield for every 1
°C increase higher than the high threshold temperature (25 °C) (Asthir et al., 2009).
However, threshold temperature varies among species, so determining specific threshold
temperatures is difficult (Wahid et al., 2007). For example, Brassica will see adverse
affects in flowering when threshold temperature reaches 29 °C, whereas cowpea can
withstand temperatures up to 41 °C (Morrison and Stewart, 2002; Wahid et al., 2007).
Furthermore, it has been reported that, once temperatures reach 30 °C, photosynthesis
peaks and for every 1 °C increase above 30 °C, assimilation declines (Wise et al., 2004).
Subsequently, even a brief exposure to high temperatures can cause damage to a plant by

diverting its energy away from photosynthesis (Siddique et al., 1999).

Heat Injury

Under high temperatures, photosynthesis in plants is affected, specifically the
photosynthetic activity of chloroplasts (Wise et al., 2004; Allakhverdiev et al., 2008).
Under normal conditions, photosynthesis converts light energy into chemical energy for
plant use. Photosynthesis takes place in the leaves, specifically in the chloroplasts using
chlorophyll as the receptor/trapping molecules. In heat stressed plants, photosynthesis is
altered and plant growth is affected. There are many processes involved in
photosynthesis and it only takes alteration of one of those processes to affect plant growth
(Wahid et al., 2007). There are at least three sites reported to be stress sensitive for the

mechanism of photoinhibition: 1) ROS inhibit the repair of photosystem II (PSII) causing
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photodamage in the oxygen-evolving complex, 2) ATP generating, and 3) the carbon
assimilation process (Murata et al., 2007; Allakhverdiev et al., 2008). The damage at
these sites depends on stress and the equilibrium between the damage and repair
processes (Allakhverdiev et al., 2008). In potato leaves, the failure of photosynthetic
electron transport at elevated temperatures affects the thermolability of PSII (Ogweno et
al., 2009). Under high temperatures, PSII activity is slowed or inhibited, which can lead
to separation of the oxygen evolving complex (OEC) or inhibition of OEC. Furthermore,
high temperatures alter the energy distribution of photosynthesis, changing carbon
metabolism enzymes, disrupting the electron transport, and inactivating the oxygen
evolving enzymes of PSII (Wahid et al., 2007).

High temperatures can also induce oxidative stress. Protection against oxidative
stress is essential for plant survival. Oxidative stress resulting from high temperature,
can activate cell signaling pathways to produce stress proteins (Bajguz and Hayat, 2009).
In response to oxidative stress, plants have developed enzymatic and non-enzymatic
detoxification systems to protect against cell damage. When plant cells are injured due to
high temperatures, they will generate ROS (Asthir et al., 2009). Chloroplasts are the
main intracellular ROS source in plants (Robert et al., 2009) and the most heat sensitive
cell function due to their photosynthetic activity (Allakhverdiev et al., 2008). During
photosynthesis and respiration, the plant is steadily producing ROS and the state of the
cell is controlled by protective mechanisms (Bajguz and Hayat, 2009). If these protective
mechanisms are disturbed, oxidative damage can result in death of the cell. Under
regular growth conditions, ROS production is very low; however, under heat stress the

production is increased. This increased production of ROS causes lipid peroxidation,
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protein denaturation, and DNA damage (Asthir et al., 2009). Since ROS are highly
reactive, plants have developed protection mechanisms against oxidative damage in the
form of antioxidant enzymes. These antioxidant enzymes, such as SOD, catalase (CAT),
peroxidase (POX), ascorbate-peroxidase (APX), glutathione reductase (GR) and
glutathione-S-transferase (GST) scavenge the plant for excited oxygen species caused by
stress (Mittler et al., 2004; Wu and von Tiedemann, 2002; Gill and Tuteja, 2010; Zhang
et al., 2010). The searching of O,” by SOD produces H,O, which is then removed by

APX or GR in the ascorbate-glutathione cycle (Cicek and Cakurlar, 2008).

Heat Tolerance

When plants are exposed to high temperatures, heat shock proteins (HSP) are
produced to protect proteins, membranes, and other cellular components (Barua et al.
2008; Queitsch et al., 2000). Plants from arid and semiarid regions can produce and
collect significant amounts of HSP (Wahid et al., 2007). These HSP protect cells against
high temperatures (Barua et al., 2003), conferring heat tolerance in the photosynthetic
electron transport chain in isolated chloroplasts (Allakhverdiev et al., 2008). HSP have
been correlated with the organism under stress, having extremely fast and intensive
biosynthesis and their induction into a diversity of cells and organisms (Wahid et al.,
2007). Furthermore, HSP are differentiated into 3 classes: HSP90, HSP70, and low
molecular weight proteins of 15 —30 kDa. Low molecular weight proteins are
programmed by six nuclear gene families targeted at different proteins in separate cellular
compartments: cytosol, chloroplast, endoplasmic reticulum, mitochondria, and

membranes (Wahid et al., 2007). Low molecular weight proteins have also been shown

14



to connect with thylakoids protecting the O, evolution and oxygen-evolving complex
proteins from heat stress (Allakhverdiev et al., 2008). Since HSP increase in the plant
during heat stress, they are thought to be essential in enhancing thermotolerance (Singh
and Shono, 2005).

Heat tolerance directly affects plant growth by regulating leaf gas exchange
(Wahid et al., 2007). Under moderate heat stress, stomatal conductance and net
photosynthesis can be slowed due to the reduction in rubisco activation. Stomata allow
CO; entry for photosynthesis and regulate water loss by signalling the guard cells
(Acharya and Assmann, 2009). Stomata also help to control leaf temperature by
regulating water loss through transpiration.

Several plant hormones aid in stomatal function: auxins, abscisic acid (ABA),
salicylic acid, cytokinins, ethylene, jasmonates, and brassinosteroids. Snyman and
Cronje (2008) reported salicylic acid enhanced heat shock response by increasing the
levels of HSP70. Brassinosteroids promote growth and are polyhydroxylated steroidal
plant hormones (Acharaya and Assmann, 2009) that have been reported to protect against
heat stress and other environmental stresses (Kagale et al., 2007; Symons et al., 2008; Xia
et al., 2009). Confraria et al. (2007) reported 24-epibrassinolides (EBR) protected in in-
vitro grown potato plants from heat stress. Additionally, brassinosteroids have been
shown to work with ABA to regulate stomatal development and function (Acharya and
Assmann, 2009). Dhaubhadel et al. (1999) reported brassinosteroids, specifically EBR,
confer heat tolerance in plants and increase basic thermotolerance of Brassica napus and
tomato seedlings. Additionally, after exposure to elevated temperatures, concentrations
of HSP were increased in treated seedlings (Dhaubhadel et al., 2002). Kagale et al.
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(2007) reported EBR enhanced the basic thermotolerance of Arabidopsis thaliana
seedlings exposed to 43 °C. They came to the conclusion that EBR enhances a plant’s
reaction to heat, increasing the plant’s tolerance. Anuradha and Rao (2007) reported
brassinosteroids protected radish seedlings from Cd-induced oxidative stress by
weakening the impact of ROS. Bajguz and Hayat (2009) reported the use of exogenously
applied brassinosteroids enhanced antioxidant enzymes such as SOD, CAT, and POX
under high temperatures in tomato leaves. Singh and Shono (2005) reported 1 uM EBR
applied to tomato plants increased survival when plants were exposed to 45 °C for 3
hours compared to nontreated plants. These reports suggest brassinosteroids do in fact
play a vital role in protecting plants from heat stress.

Heat stress can cause non-threatening injury or can be detrimental to a crop,
depending on the species. Plants with a lower threshold temperature will be most
sensitive to global warming. For example, if we take the reported decrease in wheat (a
temperate crop) yield of 4% with every 1 °C increase in temperature (Asthir et al., 2009)
and factor it into the predicted temperature increase (Xu et al., 2009), we could see a
decrease in yield of 7.2% to 16% over the next century.

In oxidative stressed plants, production of stress proteins is essential to avoid
death. Furthermore, the production of HSP are essential for increasing thermotolerance
in plants by protecting cells from high temperatures. Biological changes can also have an
effect on plant aesthetics. A decline in photosynthesis can lead to wilting, stunting, and
necrosis of the plant. A plant injured due to oxidative stress would also show symptoms

of wilting, desiccation, and necrosis, which are similar to symptoms of drought stress.
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Plant Water Relations

Under ideal growing conditions, there is adequate water available in the soil for
plant uptake. For uptake to occur there must be available water in close proximity to the
roots and the water potential must be less in plant roots than in the soil. Water potential
is defined as the free energy of water. Movement of water in plants is governed by
diffusion from high concentration to low concentration (Mengel et al., 2001).

Water status in crop production is a recognized problem worldwide (Passioura,
2007; Farooq et al., 2009). Prolonged drought can cause serious problems, especially in
poor countries where it can lead to social upheaval, mass migration, and desertification
(Passioura, 2007). In order to minimize the effect of drought conditions and to stabilize

crop production, we need to understand how plants respond to drought (Chaves et al.,

2009).

Drought

By definition, drought is a period in which rainfall is below average or altogether
absent, resulting in inadequate amounts of water for human use, agriculture, vegetation,
and fauna. Initial symptoms of drought stress are visible in actively growing plant shoots

and also roots to a lesser degree (Neumann, 2008).

Drought Injury

Availability of soil water is the first limiting factor associated with drought stress
(Verslues et al., 2006). Decreasing soil available water decreases soil water potential,
resulting in less uptake by the plant ultimately affecting plant growth through partial or
complete stomatal closure, reduced transpiration and photosynthesis, and decreased
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nitrate assimilation (Davies et al., 2002; Neumann, 2008; Sairam et al., 1997). Under
prolonged drought, if supplemental water is not supplied, plant growth can be affected
with premature leaf drop, wilting, desiccation and/or death (Neumann, 2008).
Transpiration is regulated through openings in the leaf surface known as stomata,
which are controlled by guard cells. Under ideal growing conditions, the stomatal
aperture is opened by increased solutes (such as potassium and chlorine) in the guard
cells, which cause the guard cells to swell as a result of full turgor pressure (Luan, 2002).
When turgor pressure declines and the solutes leak out; the stomatal aperture closes
(Chaves et al., 2009). Additionally, plants regulate water loss by minimizing the stomatal
aperture through increased production of abscisic acid (ABA) (Zhang et al., 2006).
Foliar-applied abscisic acid (s-ABA) has been shown to reduce water loss and extend
shelf life in bedding plants. Waterland et al. (2010) reported delayed wilting symptoms
in impatiens, seed geranium, petunia, marigold, salvia, and pansies following application

of s-ABA.

Drought Tolerance

In plant roots, ABA synthesis increases in response to soil water deficits leading
to transport through the xylem to the shoot (Comstock, 2002). ABA in the shoot controls
the stomata by signalling the guard cells (Kondo et al., 2009) to release potassium and H"
ions reducing the osmotic potential of the guard cells leading to a decrease in water
content thus reducing turgor pressure and closing the stomatal aperture (Sirichandra, et
al., 2009). Once the guard cells close the stomatal opening, there is a decrease in

stomatal conductance (Liu et al., 2005) and a decrease in carbon dioxide concentration
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inside the leaf and chloroplasts (Yordanov et al., 2003). Photosynthetic carbon reduction
and carbon oxidation cycles are the primary sink for PSII during mild drought (Cornic
and Fresneau, 2002; Yordanov et al., 2003).

In addition to physiological symptoms, water-stressed plants also undergo
morphological changes by adaptation of leaf surfaces and chloroplasts to high light (sun)
and low light (Yordanov et al., 2003). By minimizing surface area and orienting the leaf
surface perpendicular to the ground, plants minimize light exposure reducing

photosynthesis and the need for chlorophyll, thus conserving energy.

Methods of Measuring Plant Water Status

Researchers typically measure plant water potential using one of four instruments:
a psychrometer, a pressure chamber, a cryocopic osmometer, or a pressure probe.
Psychrometers measure vapor pressure of a plant sample, pressure chambers force water
out of the plant sample through pressurization, cryocopic osmometers measure the
osmotic potential of a plant sample by determining its freezing point, and pressure probes
measure plant cell water potential by maintaining turgor pressure of the cell and
preventing the cytoplasm from entering the microcapillary (Taiz and Zeiger, 2010;
Boyer, 1995). Pressure chambers are more commonly used to measure plant water status
because they are light weight and easy to use in the field. When using a pressure
chamber, different methods can be used to determine plant water status: pre-dawn leaf
water potential (Wpe), mid-day leaf water potential (Yyiq), and stem water potential
(Wstem) (Chone et al., 2001). Before dawn, plant water status is in equilibrium with the

soil; Wpe determines the root zone soil water potential (Williams and Araujo, 2002).
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Wwvig estimates water stress at maximal photosynthetic rates and water demand (Carroll et
al., 2001; McCutchan and Shackel, 1992). Wseen is @ measure of soil and leaf water
potential showing the whole level of stress the plant is under (Santesteban et al., 2010).
Leaf relative water content (RWC) refers to how much water a leaf can hold.
RWUC is the ratio of the water content in the leaf at sampling compared to fully turgid

(Smart and Bingham, 1974).

Crop Health

Some research has evaluated how applications of pesticides impact overall plant
health. Reports have shown an increase in net photosynthesis and growth of maize
seedlings by soaking the seed in 150 uM of hydrogen peroxide for 24 hours prior to
germination and exposing the seedlings to 107.6°F (Wahid et al., 2008). They attribute
this increase to the hydrogen peroxide pretreatment inducing defense genes to offset
oxidative damage. Additionally, it has been reported that chilling tolerance in cucumbers
can be increased by suppressing the hydrogen peroxide production in the leaves with
exogenous application of polyamines (Zhang et al., 2009). Furthermore, BASF has
recently added plant health to their Headline fungicide label with approval from the EPA
(BASF, 2009). The active ingredient in Headline is pyraclostrobin, a strobilurin
fungicide.

Multiple reports have indicated pyraclostrobin increases nitrate reductase activity,
increases antioxidant enzymes, increases stress tolerance, reduces the amount of CO, lost
to the atmosphere (BASF, 2009; Kohle et al., 2002; Nason et al. 2007), and increases the

overall green color of plants (Balba, 2007). Increased growth efficiency is seen in a
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variety of ways, such as improved nitrogen use through increased nitrate reductase (NR)
activity (Bartlett et al., 2002). NR activity is the first step in nitrate-assimilation with
reduction of nitrate to nitrite (NO3™ to NO,") (Kohle et al., 2002). Plants can take up
nitrogen in the form of nitrate, but nitrate must be reduced to nitrite and then ammonium
before it can be used. Under normal growth conditions, NR is regulated by translation
and transcription, activated in light, and deactivated in the dark (Glaab and Kaiser, 1999).
This cycle is mediated by a reversible phosphorylation mechanism in which an inhibitor
protein binds to NR causing deactivation and, after dephosphorylation, the inhibitor
releases the NR resulting in activation (Glaab and Kaiser, 1999). Therefore, the
increased activity of NR is more than likely associated with acidification of the
cytoplasm and blocking degradation of the NR protein (Glaab and Kaiser, 1999).

With increased levels of NR, a plant can move more nitrite through the plant to
the chloroplast. Once in the chloroplast, nitrite is reduced to ammonium then synthesized
to amino acids, aiding in leaf development and photosynthesis (Dechorgnat et al., 2011).
Thus, increased nitrate reductase activity results in faster nitrogen assimilation,
improving nitrogen use (BASF, 2012).

Nitrate reductase under abiotic stress conditions has been shown to be an
important supplier of nitric oxide, which expresses plant defense mechanisms (Rio et al.,
2004). This can be seen through inhibition of ACC synthase and ACC oxidase, key
enzymes involved in the production of ethylene (Kohle et al., 2002). Ethylene is a
phytohormone produced in all parts of the plant and increased activity is often seen in a
plant under physiological stress. Increased activity in nitrate reductase increases nitric

oxide which inhibits ethylene production and the result is a healthier plant.
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SOD is an antioxidant enzyme produced to quench ROS. ROS are always present
in the plant; however, under stressed conditions (chilling, heat or drought) they are
increased. When a plant is under ideal growing conditions, there is an even balance of
ROS (Bajguz and Hayat, 2009). However, once a plant is exposed to stress there is an
increased production of ROS and, in order for the plant to protect itself; it must produce
antioxidant species like SOD. Environmental stresses can enhance the production of
ROS leading to pathogen growth (Barna et al., 2003; Kohle et al., 2002). In order for
plants to protect themselves from pathogens, such as those causing leaf spot or necrosis,
production of antioxidant species (AOS) must be increased (Barna et al., 2003). In
disease resistant varieties, this can be done internally; however, fungicides can also be
used to increase AOS. Kohle et al. (2002) reported increased levels of peroxidase in
winter barley treated with F 500 (a strobilurin-type fungicide) compared to nontreated
plants infected with leaf spot. Zhang et al. (2010) reported increased SOD, CAT, and
POD in flag leaves of winter wheat treated with azoxystrobin (strobilurin).

Recent reports indicate exogenously applied strobilurins can increase the overall
green color of plants (Balba, 2007). The significance behind this research is that
exogenously applied substances, such as certain fungicides, are capable of increasing
plant health. The green industry could benefit significantly by increasing crop health in
changing environments where cold, heat and drought stresses are prevalent.

Conversely, there are multiple reports indicating the strobilurin fungicides do not
impact yield or water use efficiency. Schnabel and Crisosto (2008) used a premix of
pyraclostrobin and boscalid on peaches and concluded neither fruit development nor fruit

qualities were improved. Additionally, picoxystrobin, pyraclostrobin, azoxystrobin,
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kresoxim-methyl and trifloxystrobin increased the water use efficiency in well-watered

wheat, but not in water-stressed wheat (Nason et al., 2007).

Plant Material Used in This Study

Cold Stress Experiments

Citrus unshiu ‘Owari’ (satsuma) and Fragaria *ananassa ‘Camarosa’
(strawberry) were selected as two species commonly damaged during the growing season
due to late or early season freeze/frost events. Citrus unshiu (satsuma mandarin) is one
of 17 Citrus species in the Rutaceae (USDA, 2012). They are evergreen shrubs,
primarily grown for their edible fruit. California is the leading state in satsuma mandarin
production followed by the southeastern U.S. (Fadamiro et al., 2007). Commercial
production is currently seen in Alabama, California, Florida, Louisiana, Mississippi, and
Texas. California has approximately 3,000 acres of satsuma mandarins in production,
followed by Louisiana (300 acres) and Alabama (100 acres). Generally, satsuma
mandarin is a cold-tolerant citrus species tolerating temperatures as low -11 °C (Nesbitt
et al., 2008), whereas Citrus grandus and Citrus paradisi can be damaged when
temperatures border 0 °C (Champ et al., 2007). Additionally, Citrus species are prone to
disease problems; therefore, they are usually grafted onto a less susceptible species such
as Poncirus trifoliata (trifoliate orange). Trifoliate orange belongs to the same family as
Citrus, but can withstand temperatures as low as -20 °C (Champ et al., 2007).

Fragaria xananassa (garden strawberry) is the most commercially known
strawberry available (Hancock et al., 2010; Potter et al., 2000). Generally, Fragaria spp.
are grown in temperate climates where temperatures range from 12 °C (53.6°F) to 26 °C
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(78.8°F) (Ledesma et al., 2008). Once temperatures drop below 12 °C, growth of
strawberry plants and fruit development begins to slow down, and once temperature
drops below 4.4 °C, growth is subdued (Rowley et al., 2010). However, there are some
species that, once acclimated, can tolerate -2.2 °C (Warmund and English, 1998).
Nevertheless, the plants are still susceptible to chilling damage, especially if flowers and
or fruit are present (Rowley et al., 2010). Traditionally, commercial strawberries are
field-grown; however, they can be container-grown for winter production (Paranjpe et al.,
2003). Additionally, Kadir et al. (2006), reported enhanced early production growing

‘Chandler’ and ‘Sweet Charlie’ strawberries in high tunnels in Wichita, KS.

Heat and Drought Stress Experiments

Solanum lycopersicum ‘BHN 640’ (tomato) and Impatiens walleriana ‘Super
Elfin XP White’ (impatiens) were evaluated for heat sensitivity and water use efficiency.
‘BHN 640’ tomato is a determinate field variety grown commercially for the fresh
market. Tomatoes are perennials; however, they are cultivated as annuals (Tigchelaar,
1986). The garden tomato is self-pollinated and has been cultivated for years around the
globe for its fresh market value and for processing (paste, juice, sauce, powder, or whole)
(Barone et al., 2009). Tomatoes are valuable not only nutritionally, but have also been
linked to protection against diseases such as cancer and cardiovascular disease because of
lycopene and its antioxidant properties (Barone et al., 2009). Tomatoes are considered
the second most popular vegetable crop in the world. They are native to South America

but have adapted to very diverse environments (Barone et al., 2009). While tomatoes
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will grow in high temperatures, fruit production has been shown to decrease in
temperatures over 32.2 °C (89.6°F) and below 21 °C (69.8°F) (Lin et al., 2006).
Impatiens is an annual in the Balsaminaceae. Of the many species belonging to
the genus, . walleriana is one of only two species commonly found in the industry, with
the other being 1. hawkeri (Armitage, 2004). Impatiens is a spring to fall blooming
annual that requires part to full shade, a moist fertile soil, and copious amounts of water.
Under dry conditions, impatiens will have wilted leaves, a common symptom of water

stressed plants.
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CHAPTER III
EVALUATING PAGEANT (PYRACLOSTROBIN + BOSCALID) TO IMPROVE
WATER USE EFFICIENCY OF IMPATIENS WALLERIANA ‘SUPER ELFIN XP

WHITE’ AND SOLANUM LYCOPERSICUM ‘BHN 640’

Abstract

A strobilurin fungicide, pyraclostrobin (Headline: BASF, ResearchTriangle Park,
N.C.) has been reported to increase net photosynthesis and drought tolerance in wheat
and corn. However, little research has evaluated strobilurin fungicides in ornamental
crops. Experiments using Pageant (pyraclostrobin + boscalid, BASF Corporation,
Florham Park, NJ) as a foliar spray were conducted to evaluate its physiological benefits
on Impatiens walleriana ‘Super Elfin XP White’ (‘Super Elfin XP White’ impatiens) and
Solanum lycopersicum ‘BHN 640° (‘BHN 640’ tomato) under water stress. In Expts. 1
and 2, Pageant was applied to impatiens at four rates based on 3.04 oz per 100 gallons:
0.0x, 0.5x (0.114 gL', 1.0x (0.228 g'L™"), and 1.5% (0.342 g-L™"). In addition, five
water treatments based on target substrate volumetric water content (TVWC) in Expt. 1a
[85% (well-watered), 70%, 55%, 40% or 25% TVWC] and three water treatments in
Expt. 1b [85% (well-watered), 55% or 25% TVWC]. In Expt. 2, water treatments were
based on 1, 3, 6, 9 or 12 days between watering (DBW) (Expt. 2a) and 1, 3 or 6 DBW
(expt. 2b), maintaining 85% TVWC on days of watering. In Expt. 3, Pageant was applied

to tomato plants at 2 rates based on 8 oz per 100 gallons [0x and 1.0x (0.599 g-L™")] and

36



maintained at 85% (well-watered) or 55% TVWC. Shoot dry weight was greatest with
application of Pageant at the 1.0% rate to well-watered (85% TVWC) impatiens. Under
the DBW treatments, root dry weight was greater after the 0.5x% rate application,
compared to the nontreated at 6 DBW. There were no effects of different TVWC levels
or Pageant rates on tomato growth. Overall, Pageant applied to well-watered impatiens
enhanced shoot growth. Application of Pageant did not increase water use efficiency in
either impatiens or tomato. However, after four applications of Pageant at the 0.5x rate,
impatiens at 6 DBW (on average 58% TVWC) had greater root mass compared to the
nontreated. While there were indications Pageant enhanced growth of impatiens, the
results were not consistent within all water treatments. Since multiple reports indicate
yield increases in agronomic crops after applying a strobilurin fungicide, further research

is warranted in ornamentals, specifically to investigate metabolic functions.

Introduction

At the American Phytopathological Society meeting in 2009, one of the hot topic
sessions was “The use of fungicides to promote plant physiological benefits in crops”
(American Phytopathological Society, 2009). This forum opened the floor for discussion
on how fungicides are now being registered in crops for uses other than disease
management. Some fungicides, such as the strobilurins, have been shown to increase
yields through direct effects on photosynthetic efficiency and transpiration rate (BASF,
2009).

Strobilurins were first evaluated as natural products isolated from Strobilurus

tenacellus, Oudemansiella mucida, and Myxococcus fulvus (Bartlett et al., 2002).
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Strobilurins have activity against the four major fungi groups (Ascomycetes,
Basidiomycetes, Deuteromycetes and Oomycetes) and account for one-fifth of the
fungicide market (Sauter, 2007). The strobilurins target the electron transport chain in
the mitochondria of the fungus (Balba, 2007) ultimately causing death by ceasing all
respiration (Bartlett et al., 2002). Conversely, inside the plant the fungicide inhibits
mitochondrial respiration, triggering positive changes in the plant such as increased
growth efficiency, increased stress tolerance, stress management, disease control (BASF,
2009), and increased overall green color of plants (Balba, 2007). In 2009, BASF added
“plant health” to their Headline fungicide (pyraclostrobin) after approval by the
environmental protection agency (EPA) (BASF, 2009). Additionally, in 2010 they
launched Intrinsic™ brand fungicides into the turf and ornamental market, not only for
protection against fungi, but also for added plant health benefits. This brand of fungicide
includes two separate brands: Honor® SC Intrinsic™ (pyraclostrobin + boscalid) and
Insignia® SC Intrinsic™ (pyraclostrobin). Honor® SC Intrinsic™ includes two
fungicides with two target sites: complex III of fungal respiration (pyraclostrobin) and
complex II in fungal respiration (boscalid). BASF reported improved turf health after
application of Honor Intrinsic by alleviating drought/moisture and temperature extremes
(BASF, 2010). Other research has shown increases in antioxidant enzymes after
application of strobilurin fungicides to winter wheat (Zhang et al., 2010) and to spring
barley (Wu and von Tiedemann, 2002). More recently, the application of ketoconazole to
Catharanthus roseus alleviated drought stress by enhancing antioxidant potential (Jaleel

et al., 2007). However, application of picoxystrobin, pyraclostrobin, azoxystrobin,
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kresoxim-methyl and trifloxystrobin increased the water use efficiency of well-watered
wheat, but not of water-stressed wheat (Nason et al, 2007).

By increasing crop health, the green industry could benefit significantly by having
options in changing climates where drought is prevalent. Although it is known that some
fungicides stimulate growth and may improve plant health (Balba, 2007), little research
has evaluated strobilurin compounds for increasing water use efficiency in ornamental
plants. Pyraclostrobin is one of the strobilurin fungicides reported by BASF to improve
drought tolerance in corn and wheat (BASF, 2009). Therefore, we investigated the
potential for Pageant (pyraclostrobin + boscalid) (BASF Corporation, Florham Park, NJ)

to improve plant water use efficiency in impatiens and tomato plants.

Materials and Methods

Plant material and culture

Experiments 1 and 2

Impatiens walleriana ‘Super Elfin XP White’ (impatiens) were potted on 5 May
2010 (Expt. 1) and 23 June 2010 (Expt. 2) from 288-plug flats (6 cm’/cell) into 15-cm
(1.85 L) containers with Sunshine Mix 1 (SunGro Horticulture, Bellvue, WA) used as the
potting substrate. All containers were filled with substrate to the rim and lightly tapped
twice on a hard surface to reduce air pockets. After potting, impatiens were watered
thoroughly and placed in a controlled environment greenhouse located on Mississippi
State University’s main campus and grown for 4 weeks to become established in the
container. On 4 June 2010, impatiens were moved to a double-layer inflated

polyethylene covered greenhouse located on Mississippi State University’s R.R. Foil
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Plant Sciences Research Facility in a controlled environment with 60% shade and 24.4

°C/18.3 °C (day/night) set point temperatures.

Experiment 3.

Solanum Ilycopersicum ‘BHN 640 (tomato) seed were sown on 17 May 2011
(Expt. 3a) and the 24 June 2011 (Expt. 3b), in 72-cell pack liners (41-mL) in Sunshine
Mix 1 potting substrate. Three weeks later, seedlings (10.2-cm to 15.2-cm tall) were
transferred into 15-cm (1.8 L) containers and allowed to grow for two weeks before
initiating the experiment. Venting temperatures inside the greenhouse were set to
18.3/15.5 °C day/night (actual greenhouse temperature on average was 27.5 °C day and
24.0 °C night). Experiments were repeated (twice) in time and conducted in a similar

manner.

Determining substrate volumetric water content

Physical properties tests as described previously by Hidalgo (2001) were
conducted on Sunshine Mix 1 giving 90.9% total porosity, 28.3% air space, 62.6% water
holding capacity, and 0.11 g/cc bulk density. Substrate volumetric water content (VWC)
was determined according to the WATERSCOUT SM100 Soil Moisture Sensor
instructions (Spectrum Technologies, Inc, Plainfield, IL) and fit to a regression model:
VWC =0.00076503*MW — 0.79736 (MW represents target mass wetness defined as a

percentage).

40



Water stress and fungicide treatments

Experiment 1

On 14 June 2010, Expt. 1a was initiated by recording VWC and watering each
container according to its target VWC (TVWC): 85% (control), 70%, 55%, 40%, or 25%.
There were four rates of Pageant [boscalid (0.06 g ai-L™" + pyraclostrobin (0.03 g ai-L™)
(3.04 oz per 100 gallon)]: 0.0%, 0.5x [0.114 g-L" (0.015 oz-gal™)], 1.0x [0.228 g-L™' (0.03
oz-gal™)], and 1.5x [0.342 g-L"' (0.045 oz-gal™")]. Pageant was applied using a hand held
sprayer (Model # 20010 with a 301120-4 brass nozzle, Chapin International, Inc.,
Batavia, NY) once a week three hours after watering containers to the designated TVWC;
nontreated (0.0%) received water. The experiment was conducted using a split plot
(Pageant rate as the main plot factor) in a randomized complete block design witha 5 x 4
factorial treatment design and 6 single pot replications.

On 27 July 2010, Expt. 1b was initiated and conducted in a similar manner to
Expt. 1a with the following exceptions: based on results from Expt. 1a, only three VWC
levels (85%, 55%, and 25%) were included. Expt. 1b was conducted using a split plot
(Pageant rate as the main plot factor) in a randomized complete block design with a 3 x 4

factorial treatment design and 6 single pot replications.

Experiment 2

On 14 June 2010, Expt. 2a was initiated and materials and methods were similar
to Expt. 1 with the following exceptions. Instead of TVWC, containers were watered
based on days between watering (DBW): 1, 3, 6,9 or 12 DBW. At each watering,

containers were watered to reach 85 % VWC. The experiment was conducted using a
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split plot (Pageant rate as the main plot factor) in a randomized complete block design
with a 5 x 4 factorial treatment design and 6 single pot replications.

On 27 July 2010, Expt. 2b was initiated and materials and methods were similar
to Expt. 2a with the following exceptions. After screening data and visual observations
from Expt. 2a, 9 and 12 DBW proved to be detrimental to impatiens; therefore, only 3
DBW levels were used: 1, 3, and 6 DBW. Expt. 2b was conducted using a split plot
(Pageant rate as the main plot factor) in a randomized complete block design with a 3 x 4

factorial treatment design and 6 single pot replications.

Experiment 3

Expt. 3 was designed similar to Expt. 1; however, there were only 2 TVWC levels
(85 and 55%) and 2 fungicide rates based on the label rate (boscalid 0.15 g ai-L '+
pyraclostrobin 0.08 g ai-L™), 0.0x and 1.0x (0.599 g-L™"). The experiment was conducted
using a split plot (Pageant rate as the main plot factor) in a randomized complete block
design with a 2 x 2 factorial treatment design and 6 single pot replications.

Expt. 3b was the same as Expt. 3a, except it was conducted the following month.
The experiment was conducted using a split plot (Pageant rate as the main plot factor) in
a randomized complete block design with a 2 x 2 factorial treatment design and 6 single

pot replications.

Plant Growth
To determine physiological benefits of foliar applied pageant, initial growth
indices (IGI), final GI [FGI = (height + width + perpendicular width) + 3], shoot dry

weight (SDW), root dry weight [RDW (in Expts. 1 and 2 only)] and total growth (TG was
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determined by subtracting IGI from FGI) (Expt. 3 only) were collected at the close of the
study. Shoots were harvested by cutting the entire plant at the soil line, removing the
entire upper portion of the plant. Roots were harvested by first soaking the whole 15-cm
container with the substrate and roots in a 17.7-L container filled with tap water. After
soaking for a minimum of 8 h, substrate was washed from the roots over a screen to catch
all roots. Shoots and roots were oven dried in a forced air drier at 65 °C for 72 h before
obtaining dry weights. Water use efficiency (WUE), was determined as previously
described (Burnett and van Iersel, 2008) using shoot and root dry weight [WUE = (SDW

+ RDW) + total water applied].

Statistical Analysis

Data were analyzed using linear models with the GLIMMIX procedure of SAS
(SAS Institute Inc, Cary, NC). Pairwise treatment differences were obtained using the
LSMEANS statement for main effects with mean separation according to the Holm-
Simulation method, alpha = 0.05. When there was a significant interaction (ratexTVWC
or ratexDBW) the SLICEDIFF option was used to examine the pairwise comparisons

using an adjusted P value for multiple comparisons with the SIMULATE option.

Results

Experiment la

Based on actual VWC (AVWC), well-watered (85%) containers were watered the

same day after initial application of Pageant (DAIP), whereas 70% and 55% TVWC were
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watered 3 and 6 DAIP, and 40% and 25% were watered 9 and 11 DAIP, respectively
(Fig. 3.1).

Differing rates of Pageant had no effect on TG, SDW, RDW, WUE or TWA
(Table 3.1). TVWC effects were seen in TG, SDW, RDW, WUE and TWA; as TVWC
level dropped, impatiens average growth was less by the end of the experiment. It was
visibly noted that as the duration of the experiment progressed, plants in the lower
TVWC treatment exhibited wilt, leaf drop, and reduced leaf area, resulting in a reduction
in TG. WUE decreased with increasing TVWC; 25% or 40% TVWC treatments were
greater than impatiens at 85% TVWC. Additionally, WUE was similar in impatiens at
85%, 70% or 55% TVWC; however, TWA was different among 85%, 70%, or 55%
TVWC. Over the duration of the experiment impatiens at 25% TVWC impatiens received
only 0.2 L of water compared to 3.6 L at 85% TVWC treatment. There was no
significant rate XTVWC interaction. Based on visual observations, there was no
indication Pageant had an effect on enhancing growth of impatiens grown under water-

stress (Fig 3.2)

Experiment 1b

Similar to Expt. 1a, well-watered (85% TVWC) containers were watered the same
DAIP whereas 55% and 25% TVWC were watered 5 and 10 DAIP, respectively (Fig.
3.3).

Weekly application of Pageant did not have an effect on TG, SDW, RDW, WUE
or TWA (Table 3.2). Conversely, TVWC did have an effect on TG, SDW, and RDW

with plants showing greater growth in association with higher TVWC. Similar to Expt.
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la, plants watered to 25% TVWC showed signs of wilting and leaf drop, resulting in
reduced TG. In Expt. 1b, there was a significant rate x TVWC effect on SDW. After
four 1.0x applications of Pageant, impatiens in containers maintained at 85% TVWC had
greater SDW compared to nontreated impatiens (Fig. 3.4). However, when Pageant was
applied to impatiens at the 1.0x rate to plants watered at 55% or 25% TVWC there was
no differences in SDW compared to the nontreated plants. WUE, increased as TWA
decreased. Based on visual observations, there was no indication Pageant had an effect

on enhancing growth of impatiens grown under water-stress (Fig 3.5).

Experiment 2a

AVWC recorded daily for impatiens were on average: 75.0% (1 DBW), 68.2% (3
DBW), 60.0% (6 DBW), 59.5% (9 DBW), and 50.5% (12 DBW) (Fig. 3.6).

Similar to Expt. 1la, TG, SDW, RDW, WUE and TWA were not greater after the
application of Pageant compared to nontreated plants (Table 3.3). DBW did have an
effect on TG, SDW, and RDW of impatiens, indicating substantial loss in growth as the
number of DBW increased. Additionally, impatiens at 6 DBW had a higher WUE
compared to the 12 DBW treatment; however, TG was less in impatiens at 12 DBW.
Similar to Expt. 1a, there was no rate x TVWC interaction, indicating Pageant applied to
impatiens with various DBW did not result in improved water use efficiency or growth.
Based on visual observations, there was no indication Pageant had an effect on enhancing

growth of impatiens grown under water-stress (Fig. 3.7).

Experiment 2b
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AVWC recorded for impatiens with 1, 3 or 6 DBW on average was 75.6% (1
DBW), 62.2% (3 DBW), and 57.9% (6 DBW) (Fig. 3.8).

Similar to Expt. 2a, TG was not greater after the application of Pageant (Table
3.4). There was a reduction in TG as DBW increased. Additionally, there was a
significant rate x TVWC interaction effect on both SDW and RDW of impatiens.
However, when analyzed by DBW, SDW was similar across all rates of Pageant within
each DBW (Fig. 3.9). Furthermore, at 1 or 3 DBW, rates of Pageant had similar effects
within DBW. Whereas, impatiens treated with Pageant at the 0.5x rate at 6 DBW
resulted in greater RDW compare to the nontreated at 6 DBW (Fig. 3.10). Similar to
SDW, WUE was similar across all rates of Pageant within DBW (Fig. 3.11). TWA was
similar among rates of Pageant; however, decreased as DBW increased. Based on visual
observations, there was no indication Pageant had an effect on enhancing growth of

impatiens grown under water-stress (Fig 3.12).

Experiment 3a

Similar to the previous experiments, AVWC was monitored in tomato plants
watered daily based on either 85% or 55% TVWC (Fig. 3.13). In this experiment,
AVWC appeared to steadily decrease as the experiment progressed. However, AVWC
was recorded between 0600 HR and 0730 HR every morning to determine how much water
was needed to bring container to TVWC. As the experiment progressed and the tomato
plants matured they used more water daily, indicating an increase in water applied,

reported as cumulative water use (Fig. 3.14).

46



Applications of Pageant to tomato plants did not have a significant effect on TG,
SDW, or WUE (Table 3.5). TVWC did affect TG and SDW, resulting in less growth
when TVWC was maintained at 55%. Additionally, WUE was lower in plants
maintained at 85% TVWC compared to 55% TVWC. Conversely, TWA was greater in
85% TVWC. There was no rate x TVWC interaction, regardless of parameter measured.
Based on visual observations, there was no indication Pageant had an effect on enhancing

growth of tomato plants grown under water-stress (Fig 3.15).

Experiment 3b

Similar to Expt. 3a, AVWC was monitored (Fig. 3.16) and cumulative water use
was recorded (Fig. 3.17).

Pageant applied to tomato plants did not have an effect on TG, SDW, or WUE
(Table 3.6). Plants maintained at 85% TVWC had greater TG and SDW compared to the
55% TVWC treatment. WUE decreased as TWA increased. There was no ratexTVWC
interaction. Based on visual observations, there was no indication Pageant had an effect

on enhancing growth of tomato plants grown under water-stress (Fig 3.18).

Discussion
There are multiple reports indicating strobilurin fungicides, such as Pageant,
either increase yield, drought tolerance, or both in field-grown crops (BASF, 2010;
Zhang et al., 2010). Conversely, there are reports indicating increased water-use
efficiency after application of pyraclostrobin to well-watered wheat, but not water-
stressed wheat (Nason et al. 2007). This is similar to the results in Expt. 1b with
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enhanced shoot growth after application of Pageant at the 1.0x rate to well-watered (85%
TVWC) impatiens. However, Pageant applied to containers maintained at 55% or 25%
TVWC (Expt. 1) did not appear to increase drought tolerance or enhance growth of
impatiens. In Expt. 2, the 0.5x rate at 6 DBW increased RDW compared to the
nontreated at 6 DBW. Although there was a significant interaction between rate of
Pageant and TVWC or DBW, TG was not significant, indicating that the application of
Pageant may not be the contributing factor for the increased SDW or RDW (Brosnan et
al., 2010). Furthermore, maintaining impatiens at 25% TVWC was too low for impatiens
crossing the permanent wilting point (Blanusa et al., 2009). Additionally, as TWA
increased impatiens had lower WUE, which is consistent with reports by Burnett and van
Iersel, (2008).

Based on the results of these experiments, water use efficiency of neither
impatiens nor tomatoes was increased by the use of Pageant. There were indications
Pageant enhanced growth in well-watered or moderately stressed impatiens; however,
results were not consistent within water treatments. Since there are contradicting reports
about the use of strobilurins in regards to plant health, further research with ornamentals
is needed. In particular, few if any studies have had success with strobilurins in

controlled environment studies.
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Table 3.1  Growth and water use efficiency (WUE)” of Impatiens walleriana
'Super Elfin XP White' following four foliar applications of Pageant based
on the 1x rate (0.228 g L'l) to plants grown in containers maintained at

85%, 70%, 55%, 40%, or 25% target substrate volumetric water
content (TVWC) (Expt. 1a).

Rate TG’ (cm) SDW*(g) RDWYg WUE(gL') TWA' (L)

0.0x 33a" 55a 0.43 ab 4.0 a 1.8 a
0.5% 3.1a 4.7 a 0.35c¢ 39a 1.7 a
1.0x 4.1a 54a 0.47 a 42 a 1.6 a
1.5x 2.8 a 45a 0.40 bc 42 a 15a
TVWC
85% 9.0a 92a 0.70 a 27 c 36a
70% 6.4Db 6.9b 0.50 b 3.1c¢ 23D
55% 38¢ 49 c 042 b 3.6 bc 1.5¢
40% 0.3d 29d 0.30 ¢ 43D 0.7d
25% -3.0¢ 1.2 ¢ 0.15d 6.6 a 02e
Effects
rate 0.1153' 0.1116 0.1323 0.7717 0.1961
TVWC  <.0001 <.0001 <.0001 <.0001 <.0001
ratexTVWC  0.9582 0.2937 0.5048 0.4470 0.6223

“WUE = ((SDW + RDW) = total water applied).

YTG: total growth = initial growth indices (GI) - final GI [ GI = (height + width +
perpendicular width) + 3].

*SDW: shoot dry weight, oven dried for 72 h at 65 °C.

“RDW: root dry weight, oven dried for 72 h at 65 °C.

"TWA: average total water applied per plant.

"Means (within a column) with the same letters within moisture level or rate are not

statistically different according to the Holm-Simulation method for mean comparison,
a=0.05.

'P value.
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Table 3.2 Growth and water use efficiency (WUE)” of Impatiens walleriana 'Super
Elfin XP White' following four foliar applications of Pageant based on the 1x

rate (0.228 g L'l) to plants grown in containers maintained at 85%, 55%,
or 25% target substrate volumetric water content (TVWC) (Expt. 1b).

Rate TG’ (cm) SDW*(g) RDW"(g WUE(gL') TWA'(L)

0.0x 4.0a" 4.6 a 042 a 55a 1.5a
0.5x 52a 58a 0.48 a 72 a 1.3 a
1.0x 59 a 6.5a 0.50 a 7.4 a 14 a
1.5% 53a 54 a 0.51 a 73 a 14 a
TVWC
85% 11.7 a 95a 0.68 a 36¢ 2.8 a
55% 69D 54Db 0.51b 4.6 b 13D
25% -33c¢ 1.8 ¢ 0.26 ¢ 123 a 02¢c
Effects
rate  0.5776" 0.1794 0.7749 0.4464 0.1911
TVWC  <.0001 <.0001 <.0001 <.0001 <.0001
ratexTVWC  0.4688 0.0056 0.1266 0.1232 0.5671

“WUE = ((SDW + RDW) -+ total water applied).
YTG: total growth = initial growth indices (GI) - final GI [ GI = (height + width +
perpendicular width) + 3].

*SDW: shoot dry weight, oven dried for 72 h at 65 °C.

“RDW: root dry weight, oven dried for 72 h at 65 °C.

"TWA: average total water applied per plant.

“Means (within a column) with the same letters within moisture level or rate are not
statistically different according to the Holm-Simulation method for mean comparison,
a=0.05.

‘P value.
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Table 3.3  Growth and water use efficiency (WUE)” of Impatiens walleriana
'Super Elfin XP White' following four foliar applications of Pageant based
on the 1x rate (0.228 g L'l) to plants grown in containers at 1 (daily),

3, 6,9, or 12 days between watering (DBW) (Expt. 2a).

Rate TG’ (cm) SDW*(g) RDW"(g) WUE(gL') TWA" (L)

0.0x 3.7 a" 52a 0.36 a 30a 1.9a

0.5x% 39a 55a 04 a 33 a 1.9 a

1.0x 38a 53 a 0.39 a 34a 1.8 a

1.5% 3.6a 54 a 0.41 a 33a 1.9 a
DBW

1 7.6 a 93 a 0.56 a 2.7 ¢ 3.8a

3 50b 64b 044 b 3.3 ab 2.1b

6 3.7 ¢ 4.6 ¢ 042 b 3.7 a 1.3 ¢

9 2.0d 3.8¢c 0.29 ¢ 3.4 ab 1.2 ¢

12 04e¢ 2.7d 0.23 ¢ 32Db 09d
Effects

rate  0.9713' 0.9496 0.3879 0.5454 0.5818

DBW  <.0001 <.0001 <.0001 <.0001 <.0001

ratexDBW  0.1211 0.9431 0.0811 0.3442 0.6937

“WUE = ((SDW + RDW) - total water applied).

YTG: total growth = initial growth indices (GI) - final GI [ GI = (height + width +
perpendicular width) + 3].

*SDW: shoot dry weight, oven dried for 72 h at 65 °C.

“RDW: root dry weight, oven dried for 72 h at 65 °C.

YTWA: average total water applied per plant.

“"Means (within a column) with the same letters within moisture level or rate are not

statistically different according to the Holm-Simulation method for mean comparison,
a=0.05.

'P value.
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Table 3.4  Growth and water use efficiency (WUE)” of Impatiens walleriana
'Super Elfin XP White' following four foliar applications of Pageant based

on the 1x rate (0.228 g L") to plants grown in containers at 1 (daily),
3, or 6 days between watering (DBW) (Expt. 2b).

Rate TG (cm) SDW*(g) RDW"(g) WUE(gL') TWA' (L)

0.0x 9.5 a" 7.3 a 022 b 4.0 a 1.9 a
0.5x% 10.8 a 84 a 0.62 a 4.8 a 19 a
1.0x 10.0 a 82 a 0.62 a 4.7 a 1.9 a
1.5x% 95a 69 a 0.62 a 4.5 a 1.8 a
DBW
1 13.5a 98 a 0.64 a 39b 2.6a
3 96 Db 7.6 b 0.51b 43 b 1.9b
6 6.8 c 56¢ 041 c 53a 1.2 ¢
Effects
rate  <0.9240' 0.8928 0.0029 0.7276 0.8155
DBW <.0001 <.0001 <.0001 0.0003 <.0001
ratexDBW 0.8310 0.0480 0.0233 0.0114 0.0853

“WUE = ((SDW + RDW) = total water applied).
YTG: total growth = initial growth indices (GI) - final GI [ GI = (height + width +
perpendicular width) + 3].

*SDW: shoot dry weight, oven dried for 72 h at 65 °C.

“RDW: root dry weight, oven dried for 72 h at 65 °C.

YTWA: average total water applied per plant.

"Means (within a column) with the same letters within moisture level or rate are not
statistically different according to the Holm-Simulation method for mean comparison,
a=0.05.

‘P value.
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Table 3.5  Growth and water use efficiency (WUE)” of Solanum lycopersicum
BHN 640' tomato plants grown at 85 % or 55 % target substrate
volumetric water content (TVWC) following weekly foliar applications

of Pageant based on the 1x rate (0.599 g L']) (Expt. 3a).

Rate TG’ (cm) SDW* () WUE(gL" TWA"

0.0x 249 3" 60.7 a 132 a 51a
1.0x 242 a 632 a 134 a 52a
[VWC
85% 288 a 659 a 98 b 6.8 a
55% 203 b 58.0Db 16.8 a 35D
Effects
rate 0.8328" 0.1368 0.7050 0.6940
[VWC 0.0086 0.0001 <.0001 <.0001
ratexTVWC 0.7529 0.2879 0.7541 0.7549

“WUE = (SDW - total water applied).

YTG: total growth = initial growth indices (GI) - final GI [ GI = (height + width +
perpendicular width) + 3].

*SDW: shoot dry weight, oven dried for 72 h at 65 °C.

“TWA: average total water applied per plant.

"Means (within a column) with the same letters within moisture level or rate are not

statistically different according to the Holm-Simulation method for mean
comparison, o= 0.05.
P value.
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Table 3.6  Growth and water use efficiency (WUE)” of Solanum [lycopersicum
BHN 640' tomato plants grown at 85 % or 55 % target substrate
volumetric water content (TVWC) following weekly foliar applications

of Pageant based on the 1x rate (0.599 g L'l) (Expt. 3b).

Rate TG’ (cm) SDW*(g) WUE(gL™") TWA"

0.0x 18.9 a* 242 a 34 a 7.2 a
1.0x 20.4 a 239 a 33a 7.2 a
I'VWC
85% 238 a 30.5a 33a 92a
55% 155b 175 b 34 a 52b
Effects
rate 0.3227" 0.6692 0.6091 0.8205
TVWC <.0001 <.0001 0.4802 <.0001
ratexTVWC 0.9856 0.5634 0.4259 0.9383

“WUE = (SDW - total water applied).

YTG: total growth = initial growth indices (GI) - final GI [ GI = (height + width +
perpendicular width) +~ 3].

*SDW: shoot dry weight, oven dried for 72 h at 65 °C.

“TWA: average total water applied per plant.

YMeans (within a column) with the same letters within moisture level or rate are not

statistically different according to the Holm- Simulation method for mean
comparison, o = 0.05.
P value.
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Figure 3.1 Actual substrate volumetric water content (AVWC) following foliar

applications of Pageant based on the 1x rate (0.228 g-L™), to Impatiens
walleriana 'Super Elfin XP White' grown under different target substrate
volumetric water contents (TVWC): 85%, 70%, 55%, 40%, or 25%. Data
points represent daily average pooled across all rates (Expt. 1a).
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Final growth of Impatiens walleriana 'Super Elfin XP White' grown for
four weeks at 85%, 70%, 55%, 40% or 25% target substrate volumetric
water content following weekly foliar applications of Pageant: a.
nontreated control (0.0x rate), b. 0.5x (0.114 g-L'l), c. 1.0x (0.228 g-L'l),
and d. 1.5x (0.342 g'L™") (Expt. 1a).
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Figure 3.3 Actual substrate volumetric water content (AVWC) following foliar

application of Pageant based on the 1x rate (0.228 g-L™"), to Impatiens
walleriana 'Super Elfin XP White', grown under different target substrate
volumetric water contents (TVWC): 85%, 55%, and 25%. Data points
represent daily average pooled across all rates (Expt. 1b).
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Figure 3.4 Shoot dry weight (SDW) of Impatiens walleriana 'Super Elfin XP White'
grown under 85%, 55%, or 25% target substrate volumetric water content,
following four weekly foliar applications of Pageant based on the 1.0x rate
(0.228 g'L'"). Means with the same letters are not statistically different
according to the SLICEDIFF option of GLIMMIX using adjusted P values
obtained from the Simulation method, a = 0.05 (Expt. 1b).
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NONTREATED

Figure 3.5 Final growth of Impatiens walleriana 'Super Elfin XP White' grown for
four weeks at 85%, 55%, or 25% target substrate volumetric water
content following weekly foliar applications of Pageant: a. nontreated
control (0.0% rate), b. 0.5x (0.114 g'L™), c. 1.0x (0.228 g'L™"), and d. 1.5x
(0.342 g-L™") (Expt. 1b).
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Actual substrate volumetric water content (AVWC) following initial
application of Pageant based on the 1x rate (0.228 g'L™") to Impatiens
walleriana ‘Super Elfin XP White’, grown in 15-cm containers in
Sunshine Mix 1 and hand-watered daily (1) or at 3, 6, 9, or 12 days
between watering (DBW) to raise the AVWC to 85% on the day of
watering: a. 1 and 3 DBW treatments, b. 1 and 6 DBW treatments, c. 1
and 9 DBW treatments, and d. 1 and 12 DBW treatments. Data points
represent daily average pooled across rates (Expt. 2a).
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Figure 3.7

NON TREATED

Final growth of Impatiens walleriana 'Super Elfin XP White' grown for
four weeks at 1 (daily), 3, 6, 9, or 12 days between watering following
weekly foliar applications of Pageant: a. nontreated control (0.0% rate), b.
0.5% (0.114 g'L™"), ¢. 1.0x (0.228 g-L™"), and d. 1.5% (0.342 g-L"™") (Expt.
2a).
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Figure 3.8 Actual substrate volumetric water content (AVWC) following the

application of Pageant based on the 1x rate (0.228 g-L™), to Impatiens
walleriana ‘Super Elfin XP White’ and watered at 85% target substrate
volumetric water content at 1 (daily), 3 or 6 days between watering
(DBW). Data points represent daily average pooled across all rates (Expt.
2b).
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Figure 3.9 Shoot dry weight (SDW) of Impatiens walleriana ‘Super Elfin XP White’
31 days after initial foliar application of Pageant based on the 1x rate
(0.228 g-L™"). Hand-watering was based on 85% target substrate
volumetric water content at, 1 (daily), 3, or 6 days between watering
(DBW). Means with the same letters are not statistically different
according to the SLICEDIFF option of GLIMMIX using adjusted P values
obtained from the Simulation method, a = 0.05 (Expt. 2b).
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Figure 3.10  Root dry weight (RDW) of Impatiens walleriana ‘Super Elfin XP White’
31 days after application of Pageant based on the 1x rate (0.228 g'L™).
Watering was based on 85% target substrate volumetric water content at, 1
(daily), 3, or 6 days between watering (DBW). Means with the same
letters are not statistically different according to the SLICEDIFF option of
GLIMMIX using adjusted P values obtained from the Simulation method,
a = 0.05 (Expt. 2b).
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Figure 3.11

Days between watering

Water use efficiency [WUE = ((shoot + root dry weight) + total water
applied)] and mean water applied (MWA) of Impatiens walleriana ‘Super
Elfin XP White’ following weekly applications of Pageant based on the
1.0 rate (0.228 g-L™"). Watering was based on 85% target substrate
volumetric water content at, 1 (daily), 3, or 6 days between watering
(DBW). Means with the same letters are not statistically different
according to the SLICEDIFF option of GLIMMIX using adjusted P values
obtained from the Simulation method, a = 0.05 (Expt. 2b).
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Figure 3.12

NONTREATED

Final growth of Impatiens walleriana 'Super Elfin XP White' grown for
four weeks at 1 (daily), 3, or 6 days between watering following weekly
foliar applications of Pageant: a. nontreated control (0.0% rate), b. 0.5%
(0.114 g'L'"), c. 1.0x (0.228 g'L'™"), and d. 1.5x (0.342 g'L™") (Expt. 2b).
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Actual substrate volumetric water content (AVWC) following weekly
foliar application of Pageant to Solanum lycopersicum ‘BHN 640’ tomato
plants based on the 1.0x rate (0.599 g-L'l) and hand-watered to maintain
85% or 55% target substrate volumetric water content. Data points
represent daily average pooled across all rates (Expt. 3a).
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Figure 3.14  Cumulative water use of Solanum lycopersicum 'BHN 640' tomato plants
following weekly applications of Pageant based on the 1.0x rate (0.599
g-L'l) and hand-watered to maintain an 85% or 55% target substrate
volumetric water content. Data points represent daily average pooled
across all rates (Expt. 3a).
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Figure 3.15

Final growth of Solanum lycopersicum 'BHN 640' plants grown for four
weeks with 85% and 55% target substrate volumetric water content
(TVWC) following weekly foliar application of Pageant based on the 1.0x
rate (0.599 g'L'l): 1. nontreated (0.0x) with 85% TVWC, 2. nontreated
(0.0x) with 55% TVWC, 3. Pageant at 1.0x with 85% TVWC, and 4.
Pageant at 1.0x with 55% TVWC (Expt. 3a).
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Figure 3.16  Actual substrate volumetric water content (AVWC) following weekly
foliar application of Pageant to Solanum lycopersicum ‘BHN 640’ tomato
plants based on the 1.0x rate (0.599 g-L™") and hand-watered to maintain
85% or 55% target substrate volumetric water content. Data points
represent daily average pooled across all rates (Expt. 3b).
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Figure 3.17  Cumulative water use of Solanum lycopersicum 'BHN 640' tomato plants
following weekly applications of Pageant based on the 1.0x rate (0.599
g-L'l) and hand-watered to maintain an 85% or 55% target substrate
volumetric water content. Data points represent daily average pooled
across all rates (Expt. 3b).
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Figure 3.18

Final growth of Solanum lycopersicum 'BHN 640' plants grown for four
weeks with 85% and 55% target substrate volumetric water content
(TVWC) following weekly foliar application of Pageant based on the 1.0x
rate (0.599 g-L™): 1. nontreated (0.0x) with 85% TVWC, 2. nontreated
(0.0x) with 55% TVWC, 3. Pageant at 1.0x with 85% TVWC, and 4.
Pageant at 1.0x with 55% TVWC (Expt. 3b).
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CHAPTER IV
EVALUATION OF REGALIA (BIO-FUNGICIDE) AND MBI-501
(ANTITRANSPIRANT) ON DROUGHT TOLERANCE OF
IMPATIENS WALLERIANA ‘SUPER ELFIN XP WHITE’

AND SOLANUM LYCOPERSICUM ‘BHN 640’

Abstract

Regalia and MBI-501 were evaluated for their potential to enhance drought
tolerance in Impatiens walleriana ‘Super Elfin XP White’ (impatiens) and Solanum
lycopersicum ‘BHN 640’ (tomato). In Expts. 1 and 2, Regalia and MBI-501 were foliar
applied at 0.0x, 0.5x%, 1.0% or 1.5% to impatiens grown under three target substrate
volumetric water contents (TVWC): 85%, 55%, or 25%. In Expts. 3 and 4, Regalia and
MBI-501 were applied to impatiens watered at 1 (daily), 3, or 6 days between watering
(DBW). In Expts. 5 and 6, Regalia and MBI-501 were foliar applied at 0.0x or 1.0x to
tomato plants grown under 2 TVWC: 85% or 55%. Overall, in experiments using Regalia
(Expts. 1,3, and 5) there were consistent results that indicated growth enhancement after
application; whereas, results using MBI-501were inconsistent across experiements,
suggesting water treatments may be the contributing factor. Root dry weight of impatiens
was increased following the application of Regalia at the 0.5% rate. Additionally, soluble

protein content was increased in impatiens and tomato plants following application of
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Regalia. Regalia’s mode of action is seen through enhanced natural phytoalexins,

strengthening cell walls and increasing SP content, which is consistent with these results.

Introduction

Water accounts for 80 to 95% of a growing plant’s tissue and is responsible for
physical and biochemical reactions including translocation and distribution of nutrients
and metabolites (Mengel et al., 2001). Through transpiration, plants transport minerals
from the roots to the leaves. In this process, 90% of the water entering the plant is
released through the stomata, controlled by guard cells. With environmental stresses,
governmental regulations, and increased human populations with limited water supplies
(Warsaw et al., 2009; Burnett and van Iersel, 2008; Niu et al., 2008), plant producers and
landscapers have had to follow stricter water use guidelines, ultimately reducing daily
irrigation.

Availability of soil water is the first limiting factor associated with drought stress
(Verslues et al., 2006). Subsequently, a decrease in available soil water results in a
decrease in soil water potential and less uptake by the plant, ultimately affecting plant
growth through partial or complete stomatal closure, reducing transpiration and
photosynthesis, with decreased nitrate assimilation (Davies et al., 2002; Neumann, 2008;
Sairam et al., 1997). Under prolonged drought, if supplemental water is not supplied,
plant growth can be affected with pre-mature leaf drop, wilting, desiccation and/or death
(Neumann, 2008).

Antitranspirants and other exogenously applied compounds have been used to try

and reduce water loss in plants since the 1950’s (Biai et al., 2011; Kettlewell, et al.,
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2010). Typical antitranspirants are emulsions of wax or latex which create a thin film
over the surface of the plant, and kaolin clay or chitosan. Although antitranspirants may
reduce water loss, there have been reports they decrease photosynthesis. del Amor et al.
(2010) reported reduced photosynthesis in fully irrigated pepper plants after the use of an
antitranspirant.

Reports have shown an increase in net photosynthesis and growth of maize
seedlings by soaking the seed in 150 uM hydrogen peroxide for 24 h prior to exposing
the seedlings to 42 °C (Wabhid et al., 2008). They attributed this increase to the hydrogen
peroxide pretreatment inducing defense genes to offset oxidative damage. Additionally,
it has been reported that chilling tolerance in cucumbers can be increased by suppressing
hydrogen peroxide production in the leaves by exogenous application of polyamines
(Zhang et al., 2009). Pyraclostrobin, a strobilurin fungicide, has been shown to increase
nitrate reductase activity, increase antioxidant enzymes, increase stress tolerance, reduce
the amount of CO; lost to the atmosphere (BASF, 2009; Kohle et al., 2002; Nason et al.
2007) and increase the overall green color of plants (Balba, 2007). Furthermore, an
extract of Reynoutria sachalinensis (giant knotweed) marketed as Regalia by Marrone
Bio Innovations (Davis, CA) has been shown to increase the plant’s natural defense
system by increasing production of phenolics and antioxidants and by strengthening the
cell walls (Marrone Bio Innovations, 2011b). Additionally, there are reports indicating
MBI-501 (an antitranspirant by Marrone Bio Innovations) increases translocation of
photosynthates and photosynthetic activity (personal communication Marrone Bio

Innovations). The objective of these experiments was to evaluate drought tolerance of
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Impatiens walleriana ‘Super Elfin XP White’ and Solanum lycopersicum ‘BHN 640’
after weekly applications of Regalia and MBI-501 (an antitranspirant based on a long

chain fatty alcohol).

Materials and Methods

Plant material and culture

Impatiens walleriana 'Super Elfin XP White'

On 24 June 2010, Impatiens walleriana ‘Super Elfin XP White’ (impatiens)
seedlings from a 288-plug flat were potted into 15.24-cm (1.8 L) containers with
Sunshine Mix 1 (SunGro Horticulture, Bellvue, WA) potting substrate. All containers
were filled to the rim of the container and lightly tapped twice on a hard surface to reduce
air pockets. After potting, impatiens were watered, placed in a controlled environment
greenhouse located on Mississippi State University’s main campus, and grown for 4
weeks. On 23 July 2010, impatiens were moved to an inflated double polyethylene
Quonset greenhouse located on Mississippi State University’s R.R. Foil Plant Science
Research Facility under 60% shade and 21.1 °C/18.3 °C (70 °F/65 °F) (day/night) set
point temperatures. Experiments were repeated (twice) in time and conducted in a

similar manner.

Solanum lycopersicum "BHN 640’
On 17 May 2011, Solanum lycopersicum ‘BHN 640’ (tomato) seed were sown in
72-cell pack liners (41-mL) in Sunshine Mix 1 potting substrate. Three weeks later (6

June 2011), seedlings (10.2-cm to 15.2-cm tall) were transferred into 15-cm (1.8 L)
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containers and allowed to grow for two weeks before initiating the experiment. Venting
temperatures inside the greenhouse were set to 18.3/15.5 °C day/night (actual greenhouse
temperature on average was 27.5 °C day and 24.0 °C night). Experiments were repeated

(twice) in time and conducted in a similar manner.

Determining substrate volumetric water content

A physical properties test (Hidalgo, 2001) was conducted on Sunshine Mix 1:
90.9% total porosity, 28.3% air space, 62.6% water holding capacity, and 0.11 g/cc bulk
density. Substrate volumetric water content (VWC) was determined according to the
WATERSCOUT SM100 Soil Moisture Sensor instructions by Spectrum Technologies,
Inc (Plainfield, IL) and fit to a regression model: VWC = 0.00076503*MW — 0.79736

(where MW = target mass wetness defined as a percent).

Water stress and fungicide treatments

Experiment 1

Experiment was initiated on 27 July 2012 by recording actual substrate
volumetric water content (AVWC) and watering each container to the target VWC
(TVWC): 85% (control), 55%, or 25%. There were four rates of Regalia, based on the
recommended label rate of 0.48 g ai-L”' (1.28 oz-gal'l): 0.0x (nontreated), 0.5% (5 mL-L"
1, 1.0x (10 mL-L™), or 1.5% (5 mL-L™"). Foliar applications of Regalia were applied
using a hand held sprayer (Model # 20010 with a 301120-4 brass nozzle, Chapin
International, Inc., Batavia, NY) once per week three hours after watering containers to

TVWC; nontreated (0.0%) received water. Fertilizer was applied at 200 mg N L™ using
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Peter’s Professional 20N-8.8P-16.6K (20-10-20) Peat-Lite Special (Scotts, Maryville,
OH) at each watering. The experiment was conducted using a split plot (Regalia rate as
the main plot factor) in a randomized complete block design with a 3 x 4 factorial

treatment design and 6 single pot replications.

Experiment 2

The experiment was initiated on 27 July 2010 and was conducted in a similar
manner to Expt. 1, except four rates of MBI-501 were used based at the recommend label
rate of 0.93 oz-gal™': 0.0x (nontreated), 0.5 (1 mL-L™"), 1.0x (2 mL-L™"), and 1.5x (3
mL-L™"). MBI-501 was foliar applied using a hand held sprayer (Model # 20010 with a
301120-4 brass nozzle, Chapin International, Inc., Batavia, NY) once per week three
hours after watering containers to TVWC. The experiment was conducted using a split
plot (MBI-501 rate as the main plot factor) in a randomized complete block design with a

3 x 4 factorial treatment design and 6 single pot replications.

Experiment 3

This experiment was initiated on 27 July 2010 and materials and methods were
similar to Expt.1, except instead of maintaining daily TVWC, containers were watered
based on days between watering (DBW): 1 (daily), 3, or 6 DBW. At each watering,
containers were watered to 85 % TVWC. The experiment was conducted using a split
plot (Regalia rate as the main plot factor) in a randomized complete block design with a 3

x 4 factorial treatment design and 6 single pot replications.
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Experiment 4

This experiment was similar to Expt. 2 except instead of maintaining daily
TVWC, containers were watered based on DBW: 1 (daily), 3, or 6 DBW. At each
watering, containers were watered to 85 % TVWC. The experiment was conducted using
a split plot (MBI-501 rate as the main plot factor) in a randomized complete block design

with a 3 x 4 factorial treatment design and 6 single pot replications.

Experiments 5 and 6

Experiments were conducted similar to Expt. 1 and 2 except in Expt. 5, Regalia
was applied to ‘BHN 640’ tomato plants at 2 rates 0.0x (nontreated) or 1.0x (10 mL-L™)
and in Expt. 6, MBI-501 was applied to tomato plants at 2 rates 0.0 or 1.0x (2 mL-L™).
Additionally, in both Expt. 5 and 6, three TVWC levels were reduced to two, 85% or
55%. The experiments were conducted using a split plot (Regalia or MBI-501 rate as the
main plot factor) in a randomized complete block design with a 2 x 2 factorial treatment

design and 6 single pot replications.

Plant Growth

At initiation of the experiments, initial growth indices [IGI = ((height + width +
perpendicular width) + 3)] were measured. At the end of the experiments, final growth
indices [FGI= ((height + width + perpendicular width) + 3)], shoot dry weight (SDW),
root dry weight [RDW (Expts. 1 thru 4 only)], flower number and total growth [TG
(Expts. 5 and 6 only)] were measured. Shoots were harvested by cutting the entire plant

at the soil line removing the entire upper portions of the plant. Roots were harvested by
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first soaking the whole container with the substrate and roots in a 17.7-L container filled
with tap water. After soaking for a minimum of 8 h, the substrate was washed from the
roots over a screen to catch all fallen roots. Shoots and roots, were oven dried in a forced
air drier at 65 °C (149 °F) for 72 h before obtaining dry weights. TG was determined by

subtracting IGI from FGI (TG = FGI — IGI) (Expt. 5 and 6 only).

Plant Water Status

Actual substrate volumetric water content (AVWC) was measured daily (between
0600 and 0800 HR) for each container using a SM100 Soil Moisture Sensor attached to a
handheld FieldScout Soil Sensor Reader (Spectrum Technologies, Inc., Plainfield, IL).
Daily reading was fit to the soil moisture curve and containers were hand watered to
TVWC. Amount of water applied per day, per container, was used to determine
cumulative water use and total water applied.

Water use efficiency (WUE), was determined as previously described (Burnett
and van lersel, 2008) using shoot and root dry weight [WUE = (SDW + RDW) = total
water applied].

Mid-day leaf water potential (Wyem) (-Mpa) was measured using a Scholander
type Pressure Chamber according to Kjelgren et al. (2009); leaves were wrapped in
plastic wrap, followed by aluminum foil for at least one hour prior to measurement.

Relative leaf water content [RWC (Expts. 5 and 6 only)] was recorded at 14 and
28 days after initiation of experiments. RWC was calculated as [(fresh weight - dry
weight) + (turgid weight - dry weight) x 100%], and determined as previously described

by Abreu and Munné-Brosch (2008) with modifications. Leaves were excised from the
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plant and fresh weight was recorded and then placed in water for 24 h in the dark at 4 °C
before measuring turgid weight. To determine dry weight, leaves were oven dried at 65

°C for 48 h.

Photosynthesis

Leaf photosynthetic rate (Pn), was recorded at 14 and 28 days after initiation of
experiments using a CIRAS-2 portable photosynthesis system (PPSystems, Amesbury,
MD) on the most recent mature leaf. Parameters were set at 2000 pmol-m™>s™ PPF
(using a tungsten halogen light attachment), ambient temperature, a relative humidity of

50% of ambient, and a CO, concentration of 400 pmol-mol'l.

Leaf Chlorophyll Content

Leaf chlorophyll content (LCC) was measured using a handheld 502 SPAD
chlorophyll meter, (Konica Minolta, Osaka, Japan) at 1, 8, 16, 22 and 29 days after

initiation of experiments.

Antioxidant Enzyme Extractions and Assays

To evaluate metabolic changes induced after application of Regalia or MBI-501,
leaf samples were taken at the end of the experiments (placed in Kraft #1 coin envelopes,
Quality Park Products, Minneapolis, MN) and immediately frozen with liquid nitrogen

and stored at -80 °C (-112 °F) until analyzed for glutathione-S-transferase (Expt. 1, 3, and

&3



5 only). Two replications were pooled to make a total of 3 samples per treatment (Lopez-
Carbonell and Jauregui, 2005).

Crude enzyme (0.2g frozen tissue) was extracted with 1 mL of a 50 mM sodium
phosphate buffer (pH 7.5) as previously described by Venisse, et al. (2001), then
centrifuged at 14,000g at 4 °C until plant tissue was clearly separated from the 1 mL of
extraction buffer (20 to 40 minutes) (Appendix A and B.1).

Protein content was determined for each sample according to Bradford (1976)
using a Quick Start Bradford Protein Assay Kit #1 (500-0201, Bio-rad Laboratories
Headquarters, Hercules, CA) (Appendix B.2).

Glutathione-S-transferase (GST) was assayed as previously described by Venisse
et al. (2001) with some modifications. Samples were analyzed using an ELx808
Absorbance Microplate Reader with a UV filter (BioTek Instruments, Inc.) at 340 nm for
10 min. Each well contained 20uL of plant sample and 230uL of reaction buffer [0.1 M
potassium phosphate buffer (pH 6.5), 3.6 mM reduced glutathione (M.W. 307.3), 100
mM 1-chlor-2,4-dinitrobenzene (CDNB M.W. 202.6)]. Activity was determined by
following the formation of the conjugate of 1umol of CDNB with reduced glutathione

er min at pH 6.5 at 25 °C (extinction coefficient of 9.6 mM™-cm™) (Appendix B.4).
p p

Specific activity of GST was expressed as punits-mg™.

Statistical Analysis

Data were analyzed using linear models with the GLIMMIX procedure of SAS
(SAS Institute Inc, Cary, NC). Pairwise treatment differences were obtained using the

LSMEANS statement for main effects with mean separation according to the Holm-
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Simulation method, alpha = 0.05. When there was a significant interaction (ratexTVWC
or ratexDBW) the SLICEDIFF option was used to examine the pairwise comparisons,

using an adjusted P value for multiple comparisons with the SIMULATE option.

Results

Experiment 1

At initiation of the experiment, containers were determined to be at 100 %
AVWC prior to the first application of Regalia. Based on AVWC, containers maintained
at 85% TVWC were not watered again until 3 days after initial Regalia application
(DAIR), whereas, containers watered at 55% or 25% TVWC were not hand watered until
8 (55%) or 15 DAIR (25%), respectively (Fig. 4.1).

Application of Regalia did not affect FGI or SDW compared to the 0.0x
(nontreated) (Table 4.1). RDW was 26% greater in impatiens following application of
Regalia at the 0.5% rate compared to the 0.0x. Additionally, there was a TVWC effect
seen in all parameters measured indicating less growth with decreasing TVWC. There
were no interaction effects. WUE was unaffected by application of Regalia; however,
WUE decreased with increasing TVWC (Table 4.2). MWA was similar among rates but
increased with increased TVWC. These results suggest TVWC was the main factor
limiting growth of impatiens after weekly applications of Regalia.

LCC in impatiens was greater using the 0.5x rate at 16 DAIR compared to the
0.0x (nontreated) (Table 4.3). However, at the close of the experiment LCC was similar

among the 0.0 (nontreated), 0.5%, and 1.0x rates. At 16, 22, and 29 DAIR, LCC was
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greater with increasing TVWC. Pn was similar for impatiens treated with Regalia
compared to the nontreated at 14 and 28 DAIR (Table 4.4). Pn at 14 and 28 DAIR was
greater at higher TVWC. Wg.n was similar among all Regalia rates at 14 and 28 DAIR.
However, at 28 DAIR W, was lower (more negative) in the 25% TVWC plants
compared to plants watered at 85% or 55% TVWC.

GST activity was similar in leaves of impatiens after the application of Regalia
compared to the 0.0x rate; however, GST did increase with decreased TVWC (Table
4.5). There was no ratexTVWC effect on GST activity. Conversely, there was a
ratexTVWC effect on SP content in leaves of impatiens. SP content was greater in
impatiens treated with the 1.5 rate compared to the 0.5% rate of Regalia at 85% TVWC
(Fig. 4.2). Additionally, impatiens treated with all rates of Regalia (0.5%, 1.0x, or 1.5%)
at 55% TVWC had greater SP content compared to the 0.0% (nontreated) at 55% TVWC.

Although visual observations did not indicate improved growth (Fig. 4.3), Regalia
did improve RDW, LCC, and SP content of impatiens under moderately stressed (55%

TVWC) conditions (Fig. 4.3).

Experiment 2

At initiation of the experiment containers were determined to be at 100 % AVWC
before initial application of MBI-501. Based on AVWC, containers watered to 85%
TVWC were not hand watered until 2 days after initial MBI-501 application (DAIM),
whereas containers maintained at 55% or 25% TVWC had 8 days of dry down (55%) or

15 days of dry down (25%) respectively (Fig. 4.4).
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Differing rates of MBI-501 did not affect FGI, SDW or RDW (Table 4.6). FGI,
SDW, and RDW were greater at 85% TVWC treatment compared to the impatiens
maintained at 55% or 25% TVWC treatments. There was no rate x TVWC interaction
affecting FGI, SDW, or RDW.

WUE of impatiens was similar among rates; however, as TVWC decreased WUE
increased (Table 4.7). MWA was unaffected by rate of MBI-501 but was greater at 85%
TVWC compared to 55% or 25% TVWC. LCC was greater after application of the 0.5%
rate of MBI-501 at 29 DAIM compared to the nontreated (Table 4.8). Subsequently, at
16, 22, and 29 DAIM, LCC content decreased with decreasing TVWC. There was no
significant rate x TVWC effect. Rate of MBI-501 did not affect Pn at 14 or 28 DAIM
(Table 4.9). Plants grown in substrate maintained at 85% TVWC exhibited increased Pn
compared to those in substrate maintained at 25% TVWC at 14 and 28 DAIM. Fourteen
DAIM, there was a rate x TVWC effect on Wy of impatiens. Results indicated
nontreated impatiens in containers maintained at 25% TVWC had 84% and 90% lower
(more negative) Wy compared to the 1.0x and 1.5x rates (Fig. 4.5). However, MBI-501
applied at the 1.0x and 1.5% rates to impatiens watered at 25% TVWC had similar Wep,.
At 28 DAIM, the 25% TVWC severely reduced growth of impatiens; therefore, this
treatment was excluded from the data analysis. There was no rate, TVWC, or rate X
TVWC effect at 28 DAIM on W, of impatiens. Based on visual observations, there

was no indication that MBI-501 improved growth of impatiens (Fig. 4.6)

Experiment 3
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At initiation of the experiment, containers were at 100% AVWC prior to initial
application of Regalia (Fig. 4.7). During the experiment, AVWC was 80% (1 DBW),
69% (3 DBW), or 61% (6 DBW).

FGI, SDW, nor RDW of impatiens were affected by rate of Regalia (Table 4.10).
However, FGI and SDW were less with 3 and 6 DBW compared to watering daily (1
DBW). Withholding water for 3 or 6 days resulted in lower SDW compared to hand
watering every day (1 DBW). RDW of impatiens was similar among all rates of Regalia;
however, RDW was lower for plants at 3 and 6 DBW compared to 1 DBW. There was
no rate X DBW effect on FGI, SDW, or RDW.

In Expt. 3, WUE was similar in impatiens treated with Regalia compared to the
0.0x (nontreated) (Table 4.11). WUE, was greater at | DBW compared to 3 DBW.
Additionally, MWA decreased as DBW increased. There was no significant rate effect
on LCC at 1, 8, 16, or 22 DAIR; however, plants receiving the 0.5x rate of Regalia had
greater LCC compared to the 0.0x and 1.5x rates at 29 DAIR (Table 4.12). Additionally,
there was a DBW effect seen at all DAIR where 1 and 3 DBW had greater LCC
compared to plants watered at 6 DBW. Pn was not affected by rate of Regalia at 14
DAIR; however, at 28 DAIR impatiens treated with the 1.0x rate of Regalia resulted in
greater Pn compared to the nontreated (Table 4.13). At 28 DAIR, 1 and 3 DBW resulted
in greater Pn compared to the 6 DBW treatment. There was no significant rate x DBW
effect. Impatiens treated with Regalia at the 1.5x rate had 48% and 46% lower (more
negative) Wym compared to the 0.0x and 0.5x rate at 14 DAIR. However, at 28 DAIR

Yiem Was similar among all rates. In Expt. 3, AVWC on average was 80% at 1 DBW,
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69% at 3 DBW and 61% at 6 DBW; therefore, the similarity in Wy, among varying
DBW is likely due to the AVWC staying within a 20% range.

GST activity decreased in leaves treated with Regalia (0.5 1.0x and 1.5x) (Table
4.14). Whereas, leaves of impatiens at 3 or 6 DBW had similar GST activity compared
to the 1 DBW treatment. There was no ratexDBW effect on GST. However, there was a
ratexDBW effect on SP content. SP content was 86%, 65%, and 84% greater in leaves of
impatiens treated with the 1.5% rate at 1 DBW compared to the 0.0x%, 0.5x and 1.0x
treatments with 1 DBW (Fig. 4.8). Additionally, Regalia applied at the 0.5x rate
increased SP content by 77% compared to the 0.0x and 1.0x treatments at 3 DBW.
Visually, there was no indication Regalia improved growth of impatiens, even though

LCC and Pn were greater in plants treated with Regalia (Fig. 4.9).

Experiment 4

Similar to the previous experiments, at initiation of the experiment, containers
were at 100% AVWC. Substrates watered at 1, 3, or 6 DBW on average maintained an
AVWC of 79%, 67%, or 60% (Fig. 4.10).

FGI, SDW, and RDW were similar among all rates of MBI-501 (Table 4.15).
Impatiens at 3 and 6 DBW resulted in less shoot growth compared to the 1 DBW
treatments. There was no rate x DBW effect on FGI or SDW. RDW was greater in
impatiens watered at 1 DBW compared to 3 or 6 DBW.

There was a rate x DBW interaction in WUE of impatiens at 28 DAIM (Table
4.16). WUE was less in impatiens treated with the 1.5x rate of MBI-501 at 3 DBW

compared to the 0.0%, 0.5x and 1.0x treatments (Figure 4.11), indicating MBI-501
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applied at the 1.5x rate enhanced WUE in impatiens with 3 DBW. MWA to impatiens
treated with MBI-501 were similar to the 0.0x (nontreated) and decreased with increasing
DBW. There was no ratex DBW effect on MWA.

LCC was similar among all rates through the duration of the experiment (Table
4.17). There was no difference in LCC when plants were watered at | DBW compared to
3 or 6 DBW through the duration of the experiment; however, watering at 6 DBW
resulted in lower LCC compared to 1 and 3 DBW with the exception of 1 DAIM.

Pn was not affected by application of MBI-501 (Table 4.18). Pn was higher when
impatiens were watered at 1 DBW compared to 3 or 6 DBW at 28 DAIM. There was a
rate x DBW interaction on W, indicating the 1.5x rate of MBI-501 adversely affected
impatiens, resulting in 78% lower W, compared to the 0.0% rate (Fig. 4.12). However,
there were no differences in Wy, among differing DBW using the lower rates of MBI-
501.

Based on visual observations, there was no indication MBI-501 enhanced growth

of impatiens (Fig. 4.13).

Experiment 5

At initiation of the experiment, substrate was > 85% AVWC before the first
application of Regalia (Fig. 4.14). AVWC was measured between 0600HR and 0800HR
every day for the duration of the experiment and plants were hand watered to bring the
substrate to the TVWC. As the experiment progressed and the tomato plants matured
they used more water daily, indicating an increase in water applied, reported as

cumulative water use (Fig. 4.15).
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Application of Regalia did not enhance FGI, SDW, or TG (Table 4.19). There
was a TVWC effect indicating FGI, SDW, and TG were greater with increasing TVWC.
There was no rate x TVWC effect for FGI, SDW, or TG of tomato plants.

WUE was similar among rates of Regalia; however, WUE increased as TVWC
decreased from 85% to 55% (Table 4.20). MWA was similar among rates of Regalia, but
decreased with decreasing TVWC. Rate of Regalia did not affect RWC of tomato plants
at 17 DAIR (Table 4.21). At the close of Expt. 5 there was a rate x TVWC effect on
RWC. Nontreated (0.0%) tomato plants at 85% TVWC had greater RWC compared to
the 1.0x with 85% TVWC; however, substrate maintained at 55% TVWC had similar
RWC in the 0.0x and 1.0x rate (Fig 4.16). LCC, was similar among all treatments at 17
DAIR. However, at 31 DAIR LCC was greater in the 1.0% rate compared to the 0.0x rate
of Regalia but was not affected by TVWC treatments. Flower number was greater at
85% compared to 55% TVWC and was not affected by rate of Regalia. Pn, was similar
in all treatments regardless of Regalia rate or TVWC, at 17 and 31 DAIR (Table 4.22).
Yqem Was not affected by rate, but was greater (less negative) in the 85% TVWC at 17
DAIR; however, by the end of the experiment there were no differences.

There was a ratexTVWC effect on GST activity (Table 4.23). GST was greater in
the 0.0x with 85% TVWC compared to the 1.0x at 85% TVWC (Fig. 4.17).

Additionally, the 1.0x rate at 55% TVWC had greater GST activity compared to the 0.0x
rate at 55% TVWC. There was a ratexTVWC effect on SP content. SP content was
greater in leaves treated with the 1.0x rate at 85% TVWC compared to the 0.0x

(nontreated) at 85% TVWC; whereas, the nontreated at 55% TVWC had greater SP
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content compared to the 1.0% rate at 55% TVWC (Fig. 4.18). Similar to Expt. 3, Regalia
seems to have a positive effect on impatiens even though visual observations do not

indicated enhanced growth of tomato plants (Fig. 4.19).

Experiment 6

At initiation of the experiment, AVWC measurements were similar to Expt. 5
(Fig. 4.20). AVWC was measured between 0600HR and 0800HR every day for the
duration of the experiment and plants were hand watered to bring the substrate to the
TVWC. As the experiment progressed and the tomato plants matured they used more
water daily, indicating an increase in water applied, reported as cumulative water use
(Fig. 4.21).

MBI-501 applied to tomato plants did not enhance FGI, SDW or TG (Table 4.24).
Similar to the results using Regalia, TVWC was the limiting factor affecting growth.
Tomato plants grown at 85% TVWC had greater FGI, SDW and TG compared to 55%
TVWC. There was no rate x TVWC effect.

WUE of tomato plants decreased as TVWC increased (Table 4.25). At 17 DAIM,
the rate of MBI-501 did not affect RWC; however, at 31 DAIM the 1.0% rate resulted in
greater RWC compared to the nontreated (0.0x rate) (Table 4.26). Additionally, RWC
was greater at 85% TVWC at 17 and 31 DAIM. LCC was greater at 17 DAIM with the
0.0x rate compared to the 1.0x rate of MBI-501 (Table 4.26). However, at 31 DAIM
there was no rate effect. There was no difference in LCC due to TVW. Flower number
was not affected by rate of MBI-501 or TVWC. There was no rate x TVWC effect on

flower number. Pn and W, were similar among all treatments regardless of rate or
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TVWC (Table 4.27). There was no rate x TVWC effect on W, Visually there was no

indication MBI-501 improved growth of tomato plants (Fig. 4.22).

Discussion

RDW was increased after the application of Regalia at the 0.5% rate which is
consistent with data from Marrone Bio Innovations (2011a) reporting increased root
growth in strawberry and tomato seedlings after application of Regalia. Growth of
impatiens was significantly less as TVWC decreased due to reduced CO, uptake, and
greater Wyem (Burnett and van lersel, 2008). In the 25% TVWC treatment, there was
substantially less MWA over the duration of the experiment resulting in lower WUE and
reducing stomatal conductance ultimately affecting biomass production. At the close of
Expt. 1, impatiens maintained at 25% TVWC were showing signs of water stress injury
and as a result were producing more GST then impatiens maintained at 85% or 55%
TVWC (Gill and Tuteja, 2010). Regalia applied at the 1.5% rate (85% TVWC) and the
0.5x%, 1.0%, or 1.5% rate (55% TVWC) produced or enhanced SP content compared to the
nontreated, which is typical of Regalia application (Marrone Bio Innovations, 2012).

LCC was greater after application of MBI-501 at the 0.5x rate compared to the
0.0x (nontreated). Previous research has shown reduced transpiration with a decrease in
Pn after the application of an antitranspirant (del Amor, 2010); however, rate of MBI-501
did not adversely affect Pn, regardless of rate, 28 DAIM. These results agree with Goreta
et al., (2007) indicating application of an antitranspirant did not increase or enhance Pn,
Wsem, o WUE of impatiens. TVWC appeared to be the limiting factor affecting growth

of impatiens, with reduced shoot growth in plants maintained at 55 or 25% TVWC
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compared to 85% TVWC. Additionally, impatiens at 85% TVWC received 94% more
MWA, resulting in increased Pn (Niu et al., 2008; Stewart et al., 2007). By the end of
Expt. 2, impatiens at 25% TVWC had passed the permanent wilting point (Blanusa et al.,
2009).

Growth of impatiens was not enhanced by Regalia application; however,
increasing TVWC did increase growth. Typically, WUE is greater with decreasing
moisture content, resulting in less growth (Burnett and van Iersel, 2008); however, the 1
DBW treatment had greater FGI and greater WUE compared to the 3 DBW treatment
with similar MWA applied between treatments. Moreover, WUE of impatiens was
similar between the 1 and 6 DBW treatments yet MW A was 20% less with the 6 DBW
treatment compared to the 1 DBW treatment. These results are more than likely due to
the AVWC remaining within a 20% range throughout the experiment, which could also
explain the similarity in Wgen, between all TVWC. Pn was greater in impatiens treated
with Regalia at the 1.0 rate compared to the nontreated at the close of Expt. 3. Unlike
Expt. 1, the antioxidant enzyme GST was less in leaves treated with Regalia compared to
the nontreated. ROS are always present in the plant; however, only under elevated levels
do they stimulate the production of antioxidant enzymes. Furthermore, several
fungicides (carbendazim, tebuconazole, azoxystrobin, and JS399-19) have shown a
decrease in 0, levels in flag leaves of winter wheat (Zhang et al., 2010). Therefore,
Regalia may have protected against the formation of ROS, reducing the need for

antioxidant enzymes. Conversely, SP content was greater in leaves treated with the 1.5x

94



rate at 1 DBW compared to the 0.0%, 0.5x and 1.0x rate at 1 DBW. Additionally,
Regalia applied at the 0.5% rate at 3 DBW resulted in greater SP content compared to the
0.0% and 1.0% rate at 3 DBW.

Results from Expt. 4, indicated water-stress treatments appear to be the
contributing factor affecting shoot growth of impatiens. These findings were similar to
Blanusa et al., (2009) showing reduced growth of impatiens and petunia under water
stress. Previous reports have indicated reduced photosynthesis after the use of
antitranspirants (del Amor et al., 2010); however, the results reported in this paper
indicate MBI-501 did not reduce Pn. WUE was less in impatiens treated with the 1.5x
rate of MBI-501, indicating improved WUE at 3 DBW compared to the nontreated at 3
DBW. At 1 and 3 DBW, W, was similar among all rates. These findings are similar to
Goreta et al., (2007) who reported no significance in gas exchange or leaf water potential
in plants treated with film-forming materials compared to nontreated. However, there
was a negative effect on Wy, after the 1.5% rate compared to the nontreated at 6 DBW,
indicating the water stress treatment and high rate of MBI-501 were both contributing
factors. Overall, WUE was improved after the 1.5x rate; however, this was the only
indication that MBI-501 positively influenced drought tolerance of impatiens.

Application of Regalia did not enhance growth (Expt. 5); however, shoot growth
of tomato plants was reduced in the 55% TVWC compared to the 85% TVWC treatment,
which is consistent with previous studies (Rahman et al., 2004). As reported by Burnett
and van lersel (2008), WUE decreases with increased TVWC which was seen through

less biomass production of tomato per L, with increasing MWA. Regalia application did
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increase LCC compared to the nontreated, which is similar to Daayf et al. (1997). The
increase in LCC could also explain the increase in Pn after Regalia application, since
under drought stress, plants will conserve energy by reducing photosynthesis thus, the
need for chlorophyll; however, application of Regalia increased LLC in tomato leaves,
increasing Pn.

RWC decreases in plants grown under water-stress (Yuan et al., 2010) which was
indicated by the lower RWC in tomato plants at 55% TVWC compared to 85% TVWC,
respectively. GST activity was increased in leaves treated with the 1.0% rate at 55%
TVWC compared to the nontreated at 55%. Additionally, the 0.0x rate at 85% TVWC
had greater GST activity compared to the 1.0x rate at 85% TVWC. Several factors could
have contributed to these results. First, the increased levels of LCC and Pn in leaves
treated with Regalia at the 1.0% rate may have provided some form of protection;
however, TVWC was also a contributing factor as seen through reduced growth. Thus, in
the 1.0x at 85% TVWC Regalia may have enhanced production of phytoalexins (Daayf et
al., 1997); yet, with the high TVWC the plants did not need to increase production of
antioxidant enzymes. Furthermore, nontreated leaves at 55% TVWC had reduced GST
activity compared to the 1.0x at 55%. Thus, both the nontreated and the 1.0x treatment
at 55% TVWC were affected by the low TVWC with the nontreated not enhancing its
own defense mechanisms; whereas, application of Regalia at the 1.0x rate to plants at
55% TVWC, increased the production of GST. Subsequently, the nontreated at 85%
TVWC had greater GST activity, expressing the need for protection against ROS even

though it had a high TVWC. Conversely, Regalia has been reported to increase natural
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proteins in plants (Marrone Bio Innovations, 2012); which coincide with the results
presented indicating increased SP content in leaves treated with the 1.0x rate at 85%
compared to the 0.0% at 85%. Furthermore, there was a decrease in SP content in leaves
treated with the 1.0x at 55% compared to the 0.0% rate at 55% TVWC; suggesting
decreased TVWC was the contributing factor (Rahman, et al., 2004). While all efforts
were made to control for confounding variables, temperature in the greenhouse on several
occasions climbed well above the set points which could have caused adverse effects on
plant growth; however, all plants were exposed to the same conditions.

MBI-501 applied to water-stressed tomato plants did not enhance growth (Expt.
6). As with many other crops, growth of tomato was suppressed with decreasing TVWC
(Rahman, et al., 2004). WUE decreased with increasing MWA, which is consistent with
Burnett and van Iersel (2008). RWC was greater in leaves treated with the 1.0x rate of
MBI-501 compared to the nontreated; however, rate of MBI-501 did not enhance or
increase LCC, Pn, nor W, which is consistent with previous research (Goreta, et al.,
2007; McKenney and Kamp-Glass, 1990). Additionally, the 55% TVWC treatment
decreased RWC (Liu et al., 2005), indicating the water-stress treatment appears to be the
limiting factor and not the rate of MBI-501.

In conclusion, the objective of these experiments was to determine whether
drought tolerance was enhanced in ‘Super Elfin XP White’ impatiens or ‘BHN 640’

tomato plants following the application of Regalia or MBI-501. While growth was
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unaffected by rate of Regalia, impatiens and tomato plants treated with Regalia did have
increased chlorophyll content, a higher photosynthetic rate and greater soluble protein

content in moderately stressed (55% TVWC) plants.
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Table 4.1  Growth of Impatiens walleriana 'Super Elfin XP White' after four weekly
foliar applications of Regalia based on the 1x rate (10 mL- L'l), to plants

grown in containers maintained at 85%, 55% or 25% target substrate

volumetric water content (TVWC) (Expt. 1).

Rate FGI” (cm) SDW? (g) RDW"* (g)

0.0% 18.5 a% 4.1a 042 b

0.5% 19.9 a 45 a 0.57 a

1.0x 19.9 a 45 a 0.52 ab

1.5% 17.2 a 3.6a 0.41 b
TVWC

85% 24.1 a 7 a 0.66 a

55% 199 b 4.1b 0.48 b

25% 12.5 ¢ 1.1c 0.30 ¢
Effects

rate 0.1509" 0.3437 0.0010
TVWC <.0001 <.0001 <.0001

ratexTVWC 0.8587 0.0552 0.8915

“FGI.: final growth indices [(height + width + perpendicular width) -+ 3].

YSDW: shoot dry weight, oven dried for 72 h at 65 °C.

*RDW: root dry weight, oven dried for 72 h at 65 °C.

“Means (within a column) with the same letters within TVWC or rate are not statistically
different according to the Holm-Simulation method for mean comparison, o = 0.05.

VP value.
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Table 4.2  Water use efficiency (WUE) of Impatiens walleriana 'Super
Elfin XP White' after four weekly applications of Regalia based
on the 1.0% rate (10 mL- L'l) to plants grown in containers
maintained at 85%, 55% or 25% target substrate volumetric

water content (TVWC) (Expt. 1).

Rate WUE (g L") MWA (L)
0.0x 5.7 a* 12a
0.5x 6.9 a 1.1a
1.0x 6.5a 12a
1.5% 54 a 1.1 a
TVWC
85% 32b 23a
55% 43 b 1.0b
25% 10.8 a 0.1 ¢
Effects
rate 0.2484% 0.7035
TVWC <.0001 <.0001
ratexTVWC 0.9937 0.8766

“WUE = [(SDW+RDW) - total water applied].

YMW A: mean water applied.

*Means (within a column) with the same letters within moisture level or rate
are not statistically different according to the Holm-Simulation method for
mean comparison, alpha = 0.05.

VP value.

100



on[eA

'S0’0 = PuosLedwod urSW J0J POYPOW UOHBNUUIS -W[OF S} 0}

BuUIPI0OOE JUIIPIP AJ[LINSIIE)S JOU dIB )BT IO DMAL UM SISPI[ SUes S Y (UWUn[od € UIIM) SUBIIA]

“ee39y Jo uoneodde jemun soye sKep ¢ pue ‘gz ‘91 ‘| ‘1 :(ueder

‘eyourpy “-ouf sondQ BOULA] BOO) I9I0W (VS Z0S PIOYPULY € SuIsn paultiIsiop jusiuod [[Aydoio),

€690 LEST O 06£€°0 761870 68960 DMALxEI
1000"> 1000> 1000"> 9€£0°0 67SS°0 OMAL
S60°0 188170 69000 €19L°0 L1LTT0 oyer
s109pH
2 6°8¢€ OTLY 02 0°SP q L9 v T8 %ST
Qs QTS qQ0°1S qe 'Ly ® 06 %SS
® T'SS ® LS e SpS e 76V e 1'8p %S8
OMAL
q €9% ® 616 qe '8t v 8'op v 0Ly xG'T
qe €Ly ® 8'CS ®0CS e 18 v LY x0T
LS e SpS ® TS v T8t ® 805 xS0
qe '8P ® 0TS q 0’8t ® 9L & T8 00
6T 44 91 8 I ey

v[e39Y Jo uoneodde enun soye ske(q

(1 1dxq) (DMAL) UAUOD IdJeM ILAUN[OA djensqns Jo31e) 9,G7 10 046G 04G8 Ik paurejuren
sIoureuod u umoi3 syuerd oy ATA A Q) eI x()' ] Y UO paseq ee3ay Jo suoneondde renoy Ajoom

InQJ IOy pamseaw MYA\ X Wid 1odng, vuvroppm suarpduy 3o Juauod AYdoIoyd Jea] €4 JqeL

101



oNeA

*§0°0 = 0 ‘UosLedWIOd UBSW 10} POLIS UORE[NIUS -W[OH

31 01 SUIPIODI. JUSIPIP A[[BONSIIR)S 10U . ABL IO DM AL UM SISNI] SIS dY) Yiam (Um[od B UIYIAM) SUBSIAL
"SJUSIQINSEBAW U] 910J2q IOy

QU0 10J [10J WNUIM[B (I SULISA0D uay) wiy opserd ur yed] oy Surddeim isig Aq pamseawr sem [enudjod 1ojem Walg

“eI[e39y Jo uoneondde
[eniur 10y sAep g7 pue 1 1 (QIA ‘Amgsaury ‘SwaskSdd) Z-SV LD & Suisn pamseawt djel ondypuisojoyd jeoy,
¥01C0 096%°0 S¥receo 02960 DMALx3¥eI
¢LT00 01+0°0 1000> 1000> OMAL
ILLT°O 68180 ILLLO ~98E¥°0 Srel
S109P
® 6570 B 180°0- 2C¢ 96V %S¢
q 8L0°0- qe 0CI°0- q9L6 qQeL %SS
q 190°0- q €L0°0- BLII BOCI %8
OMAL
B G810 ® 0L0°0- BOL B6V xS
® 260°0- ' €60°0- e '8 eI'8 x0°'1
® 2S00 BLITO- B 06 o611 xS0
' [0T°0- ® 6L0°0- e '8 e VL x0°0
8¢ 14! 8¢ 14! ey

e[e30Y Jo uoneondde [enmur Joye sAe(q

LedIN-) ¥R

NA_.m.N.E._oE:v 91e1 onapuAsoloyd Jeo|

(1 1dxq) A_.A A Q1) eI x()° [ ) U0 paseq ee3oy] jo uoneoqdde [enmun 1oye skep g7 pue
1 (OMAL) JUAUOD I9JeM ILNAUN[OA AJeNSqnS 12318 9%,GT IO 046G 04 G] T8 PAUTBJUIEW SISUIBJUOD Ul
umoi3 YA dX ugg 1odng, vuvriappm suarypduy Jo Tenusjod 19)em wols pue ajel onapuiAsojoyd jeo1 4 9[qeL

102



Table 4.5  Glutathione-S -transferase (GST) activity and soluble
protein (SP) content in leaves of Impatiens walleriana
'Super Elfin XP White' affected by Regalia application

based on the 1.0x rate (10 mL-L'l), to plants grown in

containers at 85%, 55%, or 25% target substrate
volumetric water content (TVWC) (Expt. 1).

Rate  GST (qunits'mg’) SP (pgmL™")
0.0 92.4 a” 12 b
0.5 65.5 a 22a
1.0 332a 2.6a
1.5% 80.2 a 25a
TVWC
85% 36.5b 27 a
55% 50.5 b 2.7 a
25% 116.6 a 1.0b
Rate 0.0787" 0.0044
TVWC 0.0007 <.0001
RatexTVWC 0.1606 0.0144

“Means with the same letters within rate or TVWC are not statistically
different according to the Holm-Simulation method for mean
comparisons a = 0.05.

YP value.
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Table 4.6  Growth of Impatiens walleriana 'Super Elfin XP White' following weekly
foliar applications of MBI-501 based on the 1.0x rate (2 mL- L'l) to plants

grown in containers maintained at 85%, 55%, or 25% target substrate

volumetric water content (TVWC) (Expt. 2).

Rate FGI” (cm) SDW? (g) RDW™ (g)

0.0x 18.9 a" 39a 0.31 a

0.5x% 182 a 39 a 0.41 a

1.0x 193 a 4.2 a 033 a

1.5% 19.4 a 4.0 a 0.36 a
TVWC

85% 25.1 a 7.4 a 0.55 a

55% 193 b 35b 0.32Db

25% 12.5 ¢ 1.0 c 0.21 ¢
Effects

rate 0.8635" 0.9712 0.4842
TVWC <.0001 <.0001 <.0001

ratexTVWC 0.7115 0.9780 04716

“FGI: final growth indices [(height + width + perpendicular width) + 3].

YSDW: shoot dry weight, oven dried for 72 h at 65 °C.

*RDW: root dry weight, oven dried for 72 h at 65 °C.

“Means (within a column) with the same letters within rate or TVWC are not statistically
different according to the Holm- Simulation method for mean comparison, o = 0.05.

VP value.
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Table 4.7 Water use efficiency (WUE) of Impatiens walleriana 'Super
Elfin XP White' after four weekly applications of MBI-501
based on the 1.0% rate (2 mL- L'l) to plants grown in containers
maintained at 85%, 55% or 25% target substrate volumetric

water content (TVWC) (Expt. 2).

Rate WUE (g L")’ MWA (L)
0.0x 4.94 3~ 122 a
0.5x 544 a 1.16 a
1.0x 5.05a 1.18 a
1.5x 491 a 123 a
TVWC
85% 3.10 a 2.48 a
55% 3.82b 097 b
25% 8.34 b 0.15 ¢
Effects
rate 0.8010% 0.9263
TVWC <.0001 <.0001
ratexTVWC 0.8204 0.9995

“WUE = [(SDW+RDW) - total water applied].

YMWA: mean water applied.

*Means (within a column) with the same letters within rate or TVWC are not
statistically different according to the Holm- Simulation method for mean
comparison, a = 0.05.

“P value.
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Table 4.10  Growth of Impatiens walleriana 'Super Elfin XP White' following
weekly foliar applications of Regalia based on the 1.0x rate (10 mL- L'l)

to plants grown in containers at 1 (daily), 3, or 6 days between watering
(DBW) (Expt. 3).

Rate FGI” (cm) SDW” (g) RDW™ (g)
0.0x 20.9 a” 5.0a 0.36 a
0.5x% 21.2 a 5.7 a 0.38 a
1.0x 223 a 59 a 0.40 a
1.5% 21.1 a 44 a 0.34 a
DBW
1 234 a 6.6 a 0.46 a
21.5b 52b 0.34 b
6 193 ¢ 39¢ 030bDb
Effects
rate 0.6735" 0.9180 0.7920
DBW <.0001 <.0001 <.0001
ratexDBW 0.9610 0.8231 0.7685

“FGI: final growth indices [(height + width + perpendicular width) -+ 3].
YSDW: shoot dry weight, oven dried for 72 h at 65 °C.
*RDW: root dry weight, oven dried for 72 h at 65 °C.

“Means (within a column) with the same letters within DBW or rate are not statistically
differnt according to the Holm-Simulation method for mean comparison,a = 0.05.

VP value.
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Table 4.11  Water use efficiency (WUE) of Impatiens walleriana 'Super
Elfin XP White' after four weekly applications of Regalia based
on the 1.0% rate (10 mL- L'l) to plants grown in containers
at 1 (daily), 3 or 6 days between watering (DBW) (Expt. 3).

Rate WUE (g L") MWA (LY
0.0x 2.8 a" 2.13 a
0.5 32a 2.01 a
1.0 35a 1.96 a
1.5x% 26a 2.01 a
DBW
1 34 a 2.09 a
3 2.8b 222 a
6 3.0 ab 1.77 b
Effects
rate 0.5427% 0.6445
DBW 0.0044 0.0007
ratexDBW 0.7743 0.9690

“WUE = [(SDW+RDW) =+ total water applied].
YMWA: mean water applied.

*Means (within a column) with the same letters within rate or DBW are not
statistically different according to the Holm-Simulation method for mean

comparison, o = 0.05.
“P value.
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Table 4.14  Glutathione-S -transferase (GST) activity and soluble
protein (SP) content in leaves of Impatiens walleriana
'Super Elfin XP White' affected by Regalia application
based on the 1.0x rate (10 mL-L'l), to plants grown in

containers at 1 (daily), 3 or 6 days between watering
(DBW) (Expt. 3).

Rate  GST (qunits'mg’) SP (pgmL™")
0.0x 62.4 a” 1.7b
0.5x% 189 b 4.1 a
1.0x 245b 23b
1.5% 23.6b 45a
DBW
1 309 a 32a
3 310 a 3.6a
6 352 a 2.7 a
Rate <.0001Y 0.0013
DBW 0.8234 0.3434
RatexDBW 0.0717 0.0002

“Means with the same letters within rate or DBW are not statistically
different according to the Holm-Simulation method for mean
comparisons a = 0.05.

YP value.

112



Table 4.15  Growth of Impatiens walleriana 'Super Elfin XP White' following weekly

foliar applications of MBI-501 based on the 1.0x rate (2 mL- L) to plants
grown in containers at 1 (daily), 3 or 6 days between watering (DBW)

(Expt. 4).
Rate FGI” (cm) SDW” (g) RDW™ (g)
0.0x 21.7 a¥ 52a 042 a
0.5x 22.1 a 52 a 0.43 a
1.0x 223 a 58 a 047 a
1.5x% 21.6 a 4.8 a 0.38 a
DBW
1 243 a 7.0 a 0.55a
3 21.6 b 50b 0.39b
6 19.7 ¢ 38¢ 0.33 b
Effects
rate 0.9342" 0.3303 0.3463
DBW <.0001 <.0001 <.0001
ratexDBW 0.6783 0.4228 0.2634

“FGI: final growth indices [(height + width + perpendicular width) + 3].

YSDW: shoot dry weight, oven dried for 72 h at 65 °C.

*RDW: root dry weight, oven dried for 72 h at 65 °C.

“Means (within a column) with the same letters within rate or DBW are not statistically
different according to the Holm-Simulation method for mean comparison, o = 0.05.

'P value.
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Table 4.16  Water use efficiency (WUE) of Impatiens walleriana 'Super
Elfin XP White' following four weekly applications of MBI-501
based on the 1.0% rate (2 mL- L'l) to plants grown in containers
at 1 (daily), 3 or 6 days between watering (DBW) (Expt. 4).

Rate WUE (gL MWA (L)
0.0x 3.5 ab* 1.6 a
0.5% 3.5ab 1.6a
1.0x 37a 1.7 a
1.5% 33b 1.6 a
DBW
1 32c¢ 23 a
3 34b 1.5b
6 39a 1.0¢
Effects
rate 0.0494" 0.4582
DBW <.0001 <.0001
ratexDBW 0.0190 0.7719

“WUE = [(SDW+RDW) - total water applied].

YMW A: mean water applied.

*Means (within a column) with the same letters within rate or DBW are not
statistically different according to the Holm-Simulation method for mean
comparison, o= 0.05.

“P value.
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Table 4.19  Growth of Solanum lycopersicum "BHN 640' plants grown

under 85% or 55% target substrate volumetric water content
(TVWCQC), following weekly foliar applications of Regalia at the
1.0x rate (10 mL- L'l) (Expt. 5).

Rate FGI” (cm) SDW” (g) TG" (cm)
0.0x 51.9 a" 40.5 a 20.8 a
1.0x 52.5a 40.4 a 20.4 a
TVWC
85% 558 a 45.7 a 238 a
55% 48.7 b 352b 174 b
Effects
rate 0.5992" 0.9875 0.7180
TVWC <.0001 <.0001 <.0001
ratexTVWC 0.7916 0.5509 0.7324

“FGI: final growth indices [(height + width + perpendicular width) -+ 3].
YSDW: shoot dry weight, oven dried for 72 h at 65 °C.
*TG: total shoot growth over study (final growth indices - initial growth indices)

“Means (within a column) with the same letters, within rate or TVWC are not
not statistically different according to the Holm- Simulation method for mean

comparison,a = 0.05.
VP value.
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Table 4.20 Water use efficiency (WUE) of Solanum lycopersicum
'BHN 640' after four weekly applications of Regalia at the
1.0x rate (10 mL- L'l) to plants grown in containers
maintained at 85% or 55% target substrate volumetric
water content (TVWC) (Expt. 5).

Rate WUE (g-'L'') MWA (LY
0.0x 7.7 a* 6.0 a
1.0% 7.9 a 59a
TVWC
85% 6.1b 7.8 a
55% 95a 40b
Effects
rate 0.7155% 0.8484
TVWC <.0001 <.0001
ratexTVWC 0.5768 0.7428

“WUE = [(SDW) =+ total water applied].
YMWA: mean water applied.
*Means (within a column) with the same letters within rate or TVWC are

not statistically different according to the Holm- Simulation method for
mean comparison, alpha = 0.05.

VP value.
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Table 4.23  Glutathione-S -transferase (GST) activity and soluble protein
(SP) content in leaves of Solanum lycopersicum "BHN 640'
affected by Regalia application at the 1.0x rate (10 mL- L'l)

to plants grown in containers with 85% or 55% target substrate
volumetric water content (TVWC) (Expt. 5).

Rate GST (mnﬂts-mg'l) SP (pg-mL'l)
0.0x 55.6 a* 3.7b
1.0x 49.2 a 6.6 a
IT'VWC
85% 47.1 a 6.3 a
55% 57.7 a 40 a
Rate 0.23917 <.0001
[T'VWC 0.0549 <.0001
RatexTVWC <.0001 <.0001

“means with the same letters within rate or TVWC are not statistically different
according to the Holm-Simulation method for mean comparison, o = 0.05.

YP value.
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Table 4.24  Growth of Solanum lycopersicum 'BHN 640' plants grown
under 85 % or 55% target substrate volumetric water content
(TVWC), following weekly foliar applications of MBI-501 at
the 1.0x rate (2 mL-L™") (Expt. 6).

Rate FGI” (cm) SDW” (g) TG" (cm)
0.0x 51.6 a" 40.5 a 19.6 a
1.0x 50.5 a 40.2 a 18.8 a
TVWC
85% 552 a 453 a 233 a
55% 46.9 b 355b 15.1b
Effects
rate 0.3542" 0.6229 0.5765
TVWC <.0001 <.0001 <.0001
ratexTVWC 0.2649 0.8164 0.3408

“FGI: final growth indices [(height + width + perpendicular width) = 3].

YSDW: shoot dry weight, oven dried for 72 h at 65°C.

*TG: total shoot growth over study (final growth indices - initial growth indices).
“Means (within a column) with the same letters, within rate or TVWC are not

statistically different according to the Holm- Simulation method for mean
comparison, o = 0.05.
'P value.
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Table 4.25  Water use efficiency (WUE) of Solanum lycopersicum 'BHN
640' after four weekly applications of MBI-501 at the 1.0x rate

(2 mL- L'l) to plants grown in containers maintained at 85% or
55% target substrate volumetric water content (TVWC) (Expt. 6)

Rate WUE (gL'')” MWA (L)
0.0x 8.0 a* 58a
1.0x 7.8 a 58 a
TVWC
85% 6.1 a 7.7 a
55% 9.7b 40Db
Effects
rate 0.6836" 0.9144
TVWC <.0001 <.0001
ratexTVWC 0.6551 0.3143

“WUE = [SDW -+ total water applied].

YMW A: mean water applied.

*Means (within a column) with the same letters within rate or TVWC are not
statistically different according to the Holm-Simulation method for mean
comparison, o = 0.05.

“P value.
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Figure 4.1 Actual substrate volumetric water content (AVWC) following foliar

applications of Regalia based on the 1x rate (10 mL-L™) to Impatiens
walleriana 'Super Elfin XP White' grown at three different target
substrate volumetric water contents (TVWC): 85%, 55%, and 25%.
Data points represent daily average pooled across all rates (Expt. 1).
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Soluble protein (SP) content in leaves of Impatiens walleriana ‘Super
Elfin XP White’ following foliar application of Regalia based on the 1x
rate (10 mL-L™) to plants grown in containers with 85%, 55%, or 25%
target substrate volumetric water content (TVWC). Means with the same
letters are not statistically different according to the SLICEDIFF option of
GLIMMIX using adjusted P values obtained from the Simulation method,

a=0.05 (Expt. 1).
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Figure 4.3 Final growth of Impatiens walleriana 'Super Elfin XP White' grown at
85%, 55% and 25% target substrate volumetric water content for four
weeks following weekly foliar application of Regalia: a. nontreated
control (0.0% rate), b. 0.5% rate (5 mL-L™), c. 1.0x rate (10 mL-L™), d.
1.5% rate (15 mL-L™") (Expt. 1).
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Figure 4.4 Actual substrate volumetric water content (AVWC) after weekly,

foliar applications of MBI-501 based on the 1x rate (2 mL-L™) to
Impatiens walleriana ‘Super Elfin XP White’, and grown with
different target substrate volumetric water content (TVWC): 85%,
55%, and 25%. Data points represent daily average pooled across all
rates (Expt. 2).
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Figure 4.5 Mid-day stem water potential (Wgem) of Impatiens walleriana ‘Super Elfin
XP White’ following four weekly foliar applications of MBI-501 based on
the 1x rate (2 mL-L™). Means with the same letters are not statistically
different according to the SLICEDIFF option of GLIMMIX using adjusted
P values obtained from the Simulation method, a = 0.05 (Expt. 2).
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Figure 4.6 Final growth of Impatiens walleriana 'Super Elfin XP White' grown for
four weeks at 85%, 55% and 25% target substrate volumetric water
content following weekly foliar applications of MBI-501: a. nontreated
control (0.0% rate), b. 0.5% (1 mL-L™"), c. 1.0x 2 mL-L™"), and d. 1.5x (3
mL-L™") (Expt. 2).
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Figure 4.7 Actual substrate volumetric water content (AVWC) following foliar

application of Regalia based on the 1.0x rate (10 mL-L™), to
Impatiens walleriana ‘Super Elfin XP White’, with 1 (daily), 3 or 6
days between watering (DBW). On each day of watering, containers
were watered at 85% target substrate volumetric water content. Data
points represent daily average pooled across all rates (Expt. 3).
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Figure 4.8 Soluble protein (SP) content in leaves of Impatiens walleriana ‘Super

Elfin XP White’ following application of Regalia based on the 1.0x rate
(10 mL-L™) to plants grown in containers with 1 (daily), 3 or 6 days
between watering (DBW). Watering was based on 85% target substrate
volumetric water content at 1, 3, or 6 days between watering. Means with
the same letters are not statistically different according to the SLICEDIFF
option of GLIMMIX using adjusted P values obtained from the
Simulation method, a = 0.05 (Expt. 3).
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Figure 4.9 Final growth of Impatiens walleriana 'Super Elfin XP White' grown for
four weeks with 1, 3 or 6 days between watering (DBW) following
weekly foliar applications of Regalia: a. nontreated control (0.0x rate), b.
0.5 rate (5 mL-L™), c. 1.0x rate (10 mL-L™), d. 1.5x rate (15 mL-L™)
(Expt. 3).
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Figure 4.10

Days after initial application of MBI-501

Actual substrate volumetric water content (AVWC) following foliar
application of MBI-501 based on the 1.0x rate (2 mL-L™) to
Impatiens walleriana ‘Super Elfin XP White’, with 1 (daily), 3 or 6
days between watering (DBW) based on 85% target substrate
volumetric water content. Data points represent daily average

pooled across all rates (Expt. 4).
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Figure 4.11  Water use efficiency [WUE = ((shoot + root dry weight) + total water
applied)] of Impatiens walleriana ‘Super Elfin XP White’ after weekly
applications of MBI-501 based on the 1x rate (2 mL-L™). Watering was
based on 85% target substrate volumetric water content at 1, 3, or 6
days between watering. Means with the same letters are not
statistically different according to the SLICEDIFF option of GLIMMIX
using adjusted P values obtained from the Simulation method, a. = 0.05
(Expt. 4).
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Stem water potential (Wem) of Impatiens walleriana ‘Super Elfin XP
White’ following foliar application of MBI-501 based on the 1.0x rate (2
mL-L™"), at 1, 3, or 6 days between watering (DBW). Watering was based
on 85% target substrate volumetric water content at 1, 3, or 6 days
between watering. Means with the same letters are not statistically
different according to the SLICEDIFF option of GLIMMIX using adjusted
P values obtained from the Simulation method, a = 0.05 (Expt. 4).

137



Figure 4.13

Final growth of Impatiens walleriana 'Super Elfin XP White' grown for
four weeks with 1, 3 or 6 days between watering following weekly foliar
applications of MBI-501: a. nontreated control (0.0% rate), b. 0.5% rate (1
mL-L™"), c. 1.0x rate (2 mL-L™), and d. 1.5% rate (3 mL-L™).
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Figure 4.14  Actual substrate volumetric water content (AVWC) following weekly
application of Regalia at the 1.0x rate (10 mL-L™") to Solanum
lycopersicum ‘BHN 640’ plants, grown under two different target
substrate volumetric water contents [TVWC (85% and 55%)]. Data points
represent daily average pooled across all rates (Expt. 5).
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Figure 4.15  Cumulative water use of Solanum lycopersicum '"BHN 640' plants
following weekly foliar applications of Regalia at the 1.0% rate (10 mL-L"
", grown under two different target substrate volumetric water contents
[TVWC (85% and 55%)]. Data points represent daily average pooled
across all rates (Expt. 5).
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Figure 4.16  Relative leaf water content [RWC = (leaf fresh weight - leaf dry weight) +
(leaf turgid weight - leaf dry weight)x100] of Solanum lycopersicum
'BHN 640', grown with 85% and 55% target substrate volumetric water
contents (TVWC), following foliar application of Regalia at the 1.0x rate
(10 mL-L™"). Means with the same letters are not statistically different
according to the SLICEDIFF option of GLIMMIX using adjusted P values
obtained from the Simulation method, o = 0.05 (Expt. 5).
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Figure 4.17  Glutathione-S-transferase activity in Solanum lycopersicum ‘BHN 640’

leaves following foliar application of Regalia at the 1.0x rate (10 mL-L™)
to plants grown in containers with 85% or 55% target substrate volumetric
water content (TVWC). Means with the same letters are not statistically
different according to the SLICEDIFF option of GLIMMIX using adjusted
P values obtained from the Simulation method, a = 0.05 (Expt. 5).
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Figure 4.18
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Soluble protein (SP) in Solanum Iycopersicum ‘BHN 640° leaves
following foliar application of Regalia at the 1.0 rate (10 mL-L™) to
plants grown in containers with 85% or 55% target substrate volumetric
water content (TVWC). Means with the same letters are not statistically
different according to the SLICEDIFF option of GLIMMIX using adjusted
P values obtained from the Simulation method, a = 0.05 (Expt. 5).
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Figure 4.19

Solanum lycopersicum '"BHN 640' plants grown for four weeks with 85%
and 55% target substrate volumetric water content (TVWC), following
weekly foliar application of Regalia at the 1.0 rate (10 mL-L™): 1.
Nontreated (0.0x) at 85% TVWC, 2. nontreated (0.0%) at 55% TVWC, 3.
Regalia at 1.0 at 85% TVWC, and 4. Regalia at 1.0x at 55% TVWC
(Expt. 5).
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Figure 4.20  Actual substrate volumetric water content (AVWC) after weekly foliar

applications of MBI-501 at the 1.0 rate (2 mL-L™") to Solanum
lycopersicum 'BHN 640', plants grown under two target substrate
volumetric water contents [TVWC (85% and 55%)]. Data points
represent daily average pooled across all rates (Expt. 6).
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Figure 4.21  Cumulative water use of Solanum lycopersicum 'BHN 640" after weekly
foliar applications of MBI-501 at the 1.0x rate (2 mL-L™), grown under

two target substrate volumetric water contents [TVWC (85% and 55%)].
Data points represent daily average pooled across all rates (Expt. 6).
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Figure 4.22

Final growth of Solanum lycopersicum 'BHN 640' plants grown for four
weeks with 85% and 55% target substrate volumetric water content
(TVWC) following weekly foliar application of MBI-501 at the 1.0x rate
(2 mL-L™): 1. nontreated (0.0x) with 85% TVWC, 2. nontreated (0.0x)
with 55% TVWC, 3. Regalia at 1.0x with 85% TVWC, and 4. Regalia at
1.0x with 55% TVWC (Expt. 6).
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CHAPTER V
HEAT TOLERANCE OF IMPATIENS WALLERIANA ‘SUPER ELFIN XP WHITE’
AFFECTED BY APPLICATION TIMING OF PAGEANT,

REGALIA, OR MBI-501

Abstract

Plant health protectants are widely used on turf and ornamentals for protection
against biotic and abiotic stresses. Some have been reported to increase production of
antioxidant enzymes, increase root growth and increase photosynthesis in crops. In Expt.
1, Pageant (pyraclostrobin + boscalid), a strobilurin fungicide labeled for disease control
and plant health, was applied as a foliar spray at 0x (nontreated) or 1x (0.228 g-L™) to
Impatiens walleriana ‘Super Elfin XP White’ 72, 48, 24, or 1 h before exposing plants to
three 24-h periods with 12-h day at 32.2 °C and 12-h night at 28.3 °C. In Expt. 2 Regalia
(extract of Reynoutria sachalinensis) was applied as a foliar spray at 0x (nontreated) or
1% (10 mL-L™") to impatiens 24 or 1 h before exposing plants to three 24-h periods with
14-h day at 38.8 °C and 10-h night at 32.2 °C. In Expt. 3, MBI-501 (reflective type
antitranspirant) was applied as a foliar spray at 0x (nontreated) or 1x (2 mL-L™) to
impatiens 24 or 1 h before exposing plants to three 24-h periods with 14-h day at 38.8 °C
and 10-h night at 32.2 °C. There were two control treatments in each experiment, one
with plants exposed to the heat event and one with plants maintained at 21.1 °C /18.3 °C

(day/night): heat event was expressed over three 24-h periods at 32.2 °C/28.3 °C with a
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12-h day/night (Expt. 1) and over three 24-h periods at 38.8 °C/32.2 °C 14-h day/10-h
night (Expts. 2 and 3). Photosynthesis (Pn), stomatal conductance (Gs), and specific leaf
weight [SLW (leaf dry weight per leaf area as g-cm?)] were measured before, during, and
the day after the heat event (Expt. 1). Leaf surface temperature was measured during the
heat event and electrolyte leakage (EL) was measured immediately following the heat
event and every 3 days after for a total of 4 times. Leaf samples were collected at the end
of the heat event, immediately frozen in liquid nitrogen, and stored in a -80 °C freezer
until determination of antioxidant enzymes. After the heat event, Pn and Gs were similar
among all treatments, whereas SLW was greater in impatiens sprayed with Pageant 48 or
24 h before the heat event compared to the nontreated plants receiving no heat event. EL
was greater at 6 days after heat event (DAH) in no spray no heat impatiens (NSNH)
compared to no spray heat impatiens (NSH); however 9 DAH, treatments were similar.
Based on these results, Pageant, Regalia nor MBI-501 applied to impatiens increased heat

tolerance.

Introduction
It is inarguable that high temperatures can reduce plant growth (Wise et al., 2004).
In 2007, the Intergovernmental Panel on Climate Change predicted an increase of 1.8 to
4.0 °C over the next 100 years (Xu et al., 2009). The higher temperatures are predicted to
increase atmospheric CO; concentrations, alter rainfall regimes, and indirectly affect
respiration and photosynthesis of crop species (Hedhly et al., 2008). These high
temperatures could cause a decline in photosynthesis due to an increase in

photorespiration resulting in heat stressed plants (Sharkey, 2005). Heat stress limits plant
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biomass production and productivity through physiological and metabolic processes
(Wahid et al., 2007; Allakhverdiev et al., 2008). With the predicted temperature increases
associated with global warming, heat stress will become an increasingly important issue
for crop production (Asthir et al., 2009).

Wabhid et al. (2007) defined heat stress as the plant’s response to a rise in
temperature (usually 10 to 15 °C above ambient for an extended time) causing
irreversible damage to plant growth, whereas heat tolerance is the plant’s ability to
survive high temperatures. Furthermore, the extent of the damage and response of the
plant are dependent upon species and climatic zone which may also determine the
threshold temperature; the low and high temperatures a plant can tolerate and still
experience normal growth (Wahid et al., 2007). High temperatures causing heat stress
can have a negative impact on growth and productivity (Huang and Xu, 2008).
Temperate plants usually have lower threshold temperatures compared to tropical plants.
Wheat, a temperate crop, experiences a 4% decrease in yield for every 1 °C increase over
the high threshold temperature (25 °C) (Asthir et al., 2009). However, threshold
temperatures vary among species so determining specific threshold temperatures is
difficult (Wahid et al., 2007). For example, brassica will see adverse effects in flowering
when threshold temperature reaches 29 °C whereas cowpea can withstand temperatures
up to 41 °C (Morrison and Stewart, 2002; Wabhid et al., 2007). Furthermore, it has been

reported once temperatures reach 30 °C photosynthesis peaks and for every 1 °C increase
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above 30 °C, assimilation declines (Wise et al., 2004). Even a brief exposure to high
temperatures can cause damage to a plant by diverting energy away from photosynthesis
(Siddique et al., 1999).

High temperatures can also induce oxidative stress. Protection against oxidative
stress is essential for plant survival. Oxidative stress resulting from high temperatures
can activate plant cell signaling pathways to produce stress proteins (Bajguz and Hayat,
2009). In response to oxidative stress, plants have developed enzymatic and non-
enzymatic detoxification systems to protect against cell damage. When plant cells are
injured due to high temperatures they generate reactive oxygen species (ROS) (Asthir et
al., 2009). ROS are byproducts of plant metabolism and are vital for plant growth even
though they are highly toxic due to their oxidative abilities (Robert et al., 2009).
Formation of ROS begins with the excitation of triplet ground state oxygen (O) to form
singlet oxygen ('0,), reduction of one electron to form superoxide radical (O,"),
reduction of two electrons to form hydrogen peroxide (H,0,), or the reduction of three
electrons to form a hydroxyl radical (HO ) (Mittler, 2002). Chloroplasts are the main
intracellular ROS source in plants (Robert et al., 2009) and the most heat sensitive cell
function due to their photosynthetic activity (Allakhverdiev et al., 2008). During
photosynthesis and respiration, the plant is steadily producing ROS and the state of the
cell 1s controlled by protective mechanisms (Bajguz and Hayat, 2009). If these protective
mechanisms are disturbed, oxidative damage can result in cell death. Under regular
growth conditions, ROS production is very low; however, under heat stress the

production is increased causing lipid peroxidation, protein denaturation, and DNA
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damage (Asthir et al., 2009). Since ROS are highly reactive, plants have developed
protection mechanisms against oxidative damage in the form of antioxidant enzymes.
These antioxidant enzymes, such as SOD, catalase (CAT), peroxidase (POX), ascorbate-
peroxidase (APX), glutathione reductase (GR) and glutathione-S-transferase (GST),
scavenge the plant for excited oxygen species caused by stress (Mittler et al., 2004; Wu
and von Tiedemann, 2002; Gill and Tuteja, 2010; Zhang et al., 2010). The searching of
O, by SOD produces H,O, which is then removed by APX or GR in the ascorbate-
glutathione cycle (Cicek and Cakurlar, 2008).

During production, bedding plants often lack thermotolerance and are injured
from high temperatures (Natarajan and Kuehny, 2008). The objective of these
experiments was to evaluate pyraclostrobin + boscalid (Pageant; BASF Corporation,
Florham Park, NJ), an extract of Reynoutria sachalinensis (Regalia; Marrone
Biolnnovations, Davis, CA), and an antitranspirant (MBI-501; Marrone Biolnnovations)

on improving heat tolerance in Impatiens walleriana ‘Super Elfin XP White’ (impatiens).

Materials and Methods

Plant Material and Culture

In August 2010, impatiens were potted from 288-plug trays (Germania Seed
Company, Chicago, IL) into 15.5-cm (1.85 L) containers (Expt. 1). In May 2011,
impatiens were potted from 288-plug trays into 10-cm (1.2 L) containers (Expts. 2 and 3).

Sunshine Mix 1 (SunGro Horticulture, Bellevue, WA) was used as the potting substrate.
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Fertilizer was applied with irrigation at 200 ppm N using Peter’s Professional 20N-8.8P-
16.6K (20-10-20) Peat-Lite Special (Scotts, Maryville, OH).
Experiment 1

Pageant ([boscalid (0.06 g ai-L™") + pyraclostrobin (0.03 g ai-L™")], was applied
using a hand held sprayer (Model # 20010 with a 301120-4 brass nozzle, Chapin
International, Inc., Batavia, NY) to impatiens as a folair spray at 0x (nontreated) or 1x
(0.228 g-L'l) 72,48, 24, or 1h before exposing plants to a heat event. The heat event was
expressed in a programmable growth chamber over three 24-h periods with 12-h days at
32.2 °C (90 °F) and 12-h nights at 28.3 °C (83 °F). There were two control treatments,
one with plants maintained at 21.1 °C /18.3 °C day/night temperatures (NSNH) and one
with plants exposed to the heat event (NSH). Photosynthesis (Pn), stomatal
conductance (Gs), and specific leaf weight [SLW (leaf dry weight per leaf area as g-cmz)]
were measured prior to the heat event, the first day of the heat event, immediately after
the heat event (Day 3), and the day after the heat event (DAH) as previously described by
Lasseigne et al. (2007). In addition, leaf samples (20 mature leaves per plant) were
collected at the end of the heat event, immediately frozen in liquid nitrogen, and stored in
a -80 °C freezer until determination of antioxidant enzymes. Prior to and after the heat
event impatiens were in a glass greenhouse under 21.1 °C /18.3 °C day/night set point
temperatures located on Mississippi State University’s on campus greenhouse facility.
The experiment was conducted using a randomized complete block design and six single

plant replications. Data were analyzed using linear models with the GLM procedure of
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SAS (version 9.2, SAS Institute Inc, Cary, NC) with mean separation according to

Tukey’s studentized range test (o =0.05).

Experiment 2

Regalia (extract of Reynoutria sachalinensis 0.48 g ai-L") (Marrone
Biolnnovations Inc., Davis, CA), was applied using a hand held sprayer (Model # 20010
with a 301120-4 brass nozzle, Chapin International, Inc., Batavia, NY) to impatiens as a
foliar spray at 0x (nontreated) or 1x (10 mL-L™") to impatiens either 24 (24-hH) or 1h (1-
hH) before exposing plants to a heat event. The heat event was expressed over three 24-h
periods with 14-h days at 38 °C (100.4 °F) and 10-h nights at 32.2 °C (90 °F). There
were two control treatments, one with plants maintained at 21.1°C/18.3°C (day/night)
temperatures (NSNH) and one with plants exposed to the heat event (NSH). Leaf surface
temperatures at 1000HR and 1400HR were measured while plants were under heat stress
(IR Crop Temperature Meter; Spectrum Technologies Inc., Plainfield, IL). Electrolyte
leakage (EL%), as previously described by Liu et al. (2011) was measured immediately
following the heat event and every 3 DAH for a total of 4 times. Immediately after the
heat event, leaf samples (20 mature leaves per plant) were excised from the plant, frozen
in liquid nitrogen, and placed in a -80°C freezer until determination of enzyme analysis.
The experiment was conducted using a completely randomized design and six single
plant replications. Data were analyzed using linear models with the GLM procedure of
SAS (version 9.2, SAS Institute Inc, Cary, NC) with mean separation according to

Tukey’s studentized range test (o =0.05).
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Experiment 3

Materials and methods were similar to Expt. 2 with the following exception:
MBI-501 (reflective type antitranspirant) was applied using a hand held sprayer (Model #
20010 with a 301120-4 brass nozzle, Chapin International, Inc., Batavia, NY) to
impatiens as a foliar spray at 0x (nontreated) or 1x (2 mL-L™"), 24 h (24-hH) or 1 h (1-
hH) before exposing plants to the heat event. The experiment was conducted using a
completely randomized design and six single plant replications. Data were analyzed
using linear models with the GLM procedure of SAS (version 9.2, SAS Institute Inc,

Cary, NC) with mean separation according to Tukey’s studentized range test (o =0.05).

Antioxidant enzyme extractions and assays

Crude enzyme was extracted with 1 mL of a 50 mM sodium phosphate buffer (pH
7.5) as previously described by Venisse, et al. (2001), then centrifuged at 14,000g at 4 °C
until plant tissue was clearly separated from the 1 mL of extraction buffer (20 to 40
minutes) (Appendix A and B.1).

Soluble protein (SP) content was determined for each sample according to
Bradford (1976) using a Quick Start Bradford Protein Assay Kit #1 (500-0201, Bio-Rad
Laboratories Headquarters, Hercules, CA) (Appendix B.2).

Glutathione reductase (GR) was assayed as previously described (Esterbauer and
Grill, 1978) with modifications as follows (Appendices B.3). Samples were analyzed
using a PowerWave HT Microplate Spectrophotometer (BioTek Instruments, Inc.
Winooski, VT) at 340 nm for 10 min. Each well contained 15uL of plant sample and

200uL of reaction buffer [0.1 mM Tris-Hydrochloride pH 7.8 (M.W. 157.6), 1%
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ethylenediaminetetraacetic acid disodium salts (M.W. 372.24), 1% bovine serum albumin
(Bio Rad #500-206 2mg/mL), and 8.4 mM of B-nicotinamide adenine dinucleotide
phosphate (NADPH M.W. 833)]. Activity was determined following the reduction of
one unit of GR which catalyzes 1pmol NADPH per minute at pH 7.6 at 25 °C (extinction
coefficient of 6.2 mM™-cm™) (Appendix B.3). Specific activity of GR was expressed as
punits-mg™ .

Glutathione-S-transferase (GST) was assayed as previously described by Venisse
et al. (2001) with some modifications. Samples were analyzed using an ELx808
Absorbance Microplate Reader with a UV filter (BioTek Instruments, Inc.) at 340 nm for
5 min. Each well contained 20uL of plant sample and 230uL of reaction buffer [0.1 M
potassium phosphate buffer (pH 6.5), 3.6 mM reduced glutathione (M.W. 307.3), 100
mM 1-chlor-2,4-dinitrobenzene (CDNB M.W. 202.6)]. Activity was determined by
following the formation of the conjugate of 1umol of CDNB with reduced glutathione

per min at pH 6.5 at 25 °C (extinction coefficient of 9.6 mM™-cm™) (Appendix B.4).

Specific activity of GST was expressed as punits-mg.

Results and Discussion

Experiment 1

Pn and stomatal conductance were similar in impatiens before and 3 DAH (Table
5.1). On the first day of the heat event, impatiens sprayed with Pageant 1h before the
heat event had a greater Pn compared to the NSNH treatment. By the third day of the

heat event, all plants exposed to the heat event were photosynthesizing at a higher rate
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than the NSNH treatment. Prior to the heat event Gs was similar among all treatments
(Table 5.1). However, at day 1 of the heat event Gs was greater in the NSNH impatiens
compared to 24-hH and 1-hH plants. Day 3, Gs was greater in NSH, 48-hH, and 24-hH
impatiens compared to NSNH. There was a trend for Gs to be less in the NSNH
impatiens compared to plants exposed to heat. SLW was not significant during the first
day impatiens were exposed to the heat event (Table 5.1). However, by the third day of
heat exposure and the DAH, SLW was greater for impatiens exposed to the heat event.
Lasseigne et al. (2007) indicated lower SLW was an indication of less strain on Salvia
taxa grown under high temperatures. Additionally, higher SLW can result in higher Pn
and an indication plants are under stress (Thiaw and Hall, 2004). There were no
differences in GR or GST activity in leaves of impatiens regardless of treatment (Table
5.2). However, protein content was greater in the 72-hH and 24-hH treatments compared
to the nontreated (NSNH). These results contradict previous reports indicating reduced
SP content after exposure to heat stress (Gulen and Eris, 2004). However, while high
temperatures can reduce or cease plant growth due to inactivation of PSII (Kadir et. al.,
2007) this injury can be reversed depending on temperature, exposure time, and/or plant
species. Thus, the heat event did affect growth of impatiens; however, the impatiens
were able to recover 3 DAH. Exposing impatiens to 12-h days at 32.2 °C (90 °F) and 12-

h nights at 28.3 °C (83 °F) was not a severe heat stress.

Experiment 2

Plants exposed to the heat event had greater leaf surface temperature during the

heat event (Fig. 5.1). At the end of the experiment, there were no differences in TG or
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SDW regardless of treatment (Table 5.3). There were no differences in EL between
Regalia treated impatiens or impatiens exposed to the heat event compared to the
nontreated (NSNH) (Table 5.4). Gulen and Eris (2004), indicated similar EL between
strawberry plants exposed to temperatures below 40 °C with a significant increase above
40 °C, which could explain the lack of cell membrane injury to impatiens in this
experiment. GR activity was greater in impatiens exposed to the heat event (NSH, 24-hH
and 1-hH) compared to the NSNH treatments (Table 5.5). SP content associated with the
GR assays was greater in the NSNH treatment compared to impatiens exposed to the heat
event. GST was greater in the 1-hH treatment compared to the NSNH treatment;
however, all impatiens exposed to the heat event had similar GST activity. Similar to GR
analysis, the SP determined from the GST assay, was greater in the NSNH treatment
compared to impatiens exposed to the heat event. GR is produced under heat stress to
detoxify ROS and has been shown to increase in strawberry plants after exposure to
temperatures above 30 °C with a decrease in total protein (Gulen and Eris, 2004).
Therefore, the heat event did affect metabolic changes but, there were no indications

Regalia enhanced heat tolerance of impatiens.

Experiment 3

Leaf surface temperatures were similar to those of Expt. 2 (Fig. 5.2). At the close
of the experiment there was a difference in TG and SDW of impatiens following
application of MBI-501 and heat event (Table 5.6). TG was statistically greater in NSNH
impatiens compared to those in the 24-hH and 1-hH treatments, yet similar to the NSH

impatiens. Similarly, SDW was greater in the NSNH impatiens compared to impatiens

162



treated with MBI-501 (24-hH and 1-hH) but not to NSH impatiens. EL was significantly
different at 3 and 6 DAH (Table 5.7). At 3 DAH EL was greater in the NSNH impatiens
compared to NSH and 1-hH impatiens. Similar results were seen 6 DAH with greater EL
in the NSNH compared to the NSH. However, 24-hH and 1-hH had similar EL to NSNH.
Impatiens exposed to the heat event and treated with MBI-501 had similar EL compared
to NSNH at close of the experiment. GR activity was greater in the 1-hH treatment
compared to the NSNH and 24-hH treatments; however, SP content was similar among
all treatments (Table 5.8). GST activity was greater in all treatments exposed to the heat
event (NSH, 24-hH, and 1-hH) compared to the NSNH treatment. SP content was
unaffected by heat treatment. These findings are consistent with previous research
indicating increased antioxidant activity after exposure to high temperatures (Gulen and
Eris, 2004; Du et al, 2009).

The cell membrane is one of the first sites injured due to stress (Bajji et al., 2002)
and EL is a widely accepted tool to assess membrane damage and heat tolerance (Yeh
and Lin, 2003). It was hypothesized MBI-501 applied to impatiens may provide limited
protection from heat stress. However, there was a negative correlation between SDW
and high temperature indicating injury (Haldimann and Feller, 2005). Therefore, there
was not sufficient evidence indicating improved heat tolerance of impatiens following the

application of MBI-501.
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Table. 5.1  Photosynthesis, stomatal conductance, and specific leaf weight for Impatiens walleriana
'Super ElfinXP White' exposed to a heat event”, following application of Pageant (1x
=0.228 gL' (Expt. 1).

Day of measurement’

Pre 1st Day 3rd Day Post

Treatment” Photosynthesis (umol-m >~ )™
NSNH 39a" 4.7b 51b 6.1 a
NSH 49 a 7.1 ab 8.6 a 6.9 a
72-hH 4.6 a 6.8 ab 8.8 a 7.5 a
48-hH 39a 6.8 ab 8.8 a 6.8 a
24-hH 45 a 7.5 ab 8.6 a 72 a
1-hH 43 a 8.2a 8.4 a 6.9 a
Significance" NS * *okok NS

Stomatal Conductance (mmol-m s ']) v

NSNH 56.4 a 100.0 b 1435 b 113.0 a
NSH 64.8 a 182.6 ab 318.1 a 129.6 a

72-hH 76.1 a 182.2 ab 245.3 ab 123.1 a
48-hH 57.4 a 187.4 ab 309.8 a 1413 a
24-hH 619 a 214.6 a 2939 a 1375 a
1-hH 64.7 a 236.2 a 261.3 ab 1374 a

Significance NS wx * NS

Specific leaf weight (g-cm ? )°

NSNH - 0.0014 a 0.0014 b 0.0015 b
NSH - 0.0016 a 0.0019 a 0.0019 ab
72-hH - 0.0016 a 0.0020 a 0.0019 ab
48-hH - 0.0017 a 0.0020 a 0.0021 a
24-hH - 0.0017 a 0.0020 a 0.0019 a
1-hH - 0.0016 a 0.0020 a 0.0019 ab
Significance - NS HHE **

“Heat event was expressed in a programmable growth cahmber over three 24-h periods with 12-h days
at 32.2°C and 12-h nights at 28.3°C.

YDay of measurement: pre = measurements before heat event, Dayl = measurements the first day of heat
event, Day3 = measurements the third day of heat event, Post = three days after heat event.

*Treatments: NSNH = no spray no heat, NSH = no spray heat, 72-hH = Regalia applied at 1x 72 h
before heat event, 48-hH = Regalia applied at 1x 48 h before heat event, 24-hH = Regalia applied
at 1x 24 h before heat event, 1-hH = Regalia applied at 1x 1 h before heat event.

“Photosynthesis and stomatal conductance measurements were taken using a CIRAS-2 portable
photosynthesis system, (PP Systems, Amesbury, MD), on mature leaves.

YMeans followed by the same letters within same column for each data set are not significantly different

according to Tukey's Studentized Range test, o = 0.05.
NS T " Indicates nonsignificant or significant at P < 0.05, 0.01, 0.001, respectively.

5 >

*Specific leaf weight: leaf dry weight per leaf area (g cmz).
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Table 5.2  Glutathione reductase (GR), glutathione-S -transferase (GST), and protein
content in leaves of Impatiens walleriana 'Super Elfin XP White'
affected by timing of Pageant application (1x = 0.228 g L'l), prior to a
three day heat event” (Expt. 1).

Treatments” GR (punits-mg'l) GST (pumits-mg'l) Protein (pg mL'l)

NSNH 1.20 0.57 1.4 b*
NSH 1.99 0.11 1.7 ab
72-hH 3.16 0.38 19a
48-hH 1.51 1.07 1.5 ab
24-hH 2.90 1.99 1.8 a

1-hH 1.62 0.84 1.8 ab
Significance" NS NS *

“Heat event was expressed in a programmable growth chamber over three 24-h periods
with 12-h days at 32.2°C and 12-h nights at 28.3°C

YTreatments: NSNH = no spray no heat, NSH = no spray heat, 72-hH = Pageant at
1x 72 h before heat event, 48-hH = Pageant at 1x 48 h before heat event, 24-hH =
Pageant at 1x 24 h before heat event, 1-hH = Pageant at 1x 1 h before heat event.

*Means (within a column) with the same letters are not statistically different according to

Tukey's studentized range test for mean comparison a = 0.05.

"N *Indicates nonsignificant or significant difference at P < 0.05.
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Table 5.3  Growth of Impatiens walleriana 'Super Elfin XP

White' after exposure to 38.8 °C/32.2 °C (12-h day/
12-h night) for three days, following a foliar application
of Regalia (1x = 10 mL-L™") (Expt. 2).

Treatments” Total growth” Shoot dry weight”
NSNH 4.2 10.1
NSH 6.0 8.1
24-hH 4.5 8.8
1-hH 4.9 9.5
Significance™ NS NS

“Treatments: NSNH = no spray no heat, NSH = no spray heat,
24-hH = Regalia at 1x 24 h before heat, 1-hH = Regaliaat I1x 1 h

before heat.

*Total growth: Final growth indices (GI) - initial GI [GI = (height +
width + perpendicular width)=+3].

YShoot dry weight oven dried for 72 h at 65 °C.
NSIndicates nonsignificant at P < 0.05.
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Table 5.4  Evaluating electrolyte leakage (%)” of Impatiens walleriana 'Super Elfin

XP White' following application of Regalia (1x = 10 mL- L_l), prior to
exposure to elevated temperatures” (Expt. 2).

Days after heat event

Treatments™ 1 3 6 9
NSNH 7.8 9.3 10.1 11.2
NSH 8.6 7.7 9.1 9.5
24-hH 9.3 7.8 8.5 9.6
1-hH 10.1 7.8 9.7 11.2
Significance" NS NS NS NS

“Electrolyte leakage (EL) was determined by taking three, 20 mm disc samples and
adding 20 mL of distilled water and shaken for 20 h, before reading first electrical
conductivity reading (EC) then autoclaved at 120 °C and cooled to room
temperature before second reading (EC,) [EL = (EC; + EC,) x 100].

YHeat event was expressed in a programmable growth chamber over three 24-hr
periods with 12-h days at 38.8 °C and 12-h nights at 32.2 °C.

*Treatments: NSNH = no spray no heat, NSH = no spray heat, 24-hH = Regalia at
1x 24 h before heat event, 1-hH = Regalia at 1x 1 h before heat event.

"SIndicates nonsignificant at P < 0.05.
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Table 5.6  Growth of Impatiens walleriana 'Super Elfin XP

White' after exposure to 38.8 °C/32.2 °C (12-h day/

12-h night) for three days, following a foliar application
of MBI-501 (1% =2 mL-L") (Expt. 3)

Treatments” Total growth™ Shoot dry weight”
NSNH 83 a 11.0 a
NSH 5.6 ab 9.4 ab
24-hH 53b 9.0b
1-hH 34b 8.1b
Significance” ook kx

“Treatments: NSNH = no spray no heat, NSH = no spray heat,
24-hH = MBI-501 at 1% 24 h before heat, 1-hH = MBI-501 at
1% rate 1 h before heat.

*Total growth: Final growth indices (GI) - initial GI [GI = (height +
width + perpendicular width)+3].

YShoot dry weight oven dried for 72 h at 65 °C.

Xk kkE

,  Indicates significant at P < 0.01 or 0.001.
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Table 5.7  Evaluating electrolyte leakage (%)” of Impatiens walleriana 'Super Elfin

XP White' following application of MBI-501 (1x =2 mL- L'l), prior to

exposure to elevated temperatures’ (Expt. 3).

Days after heat event

Treatments™ 1 3 6 9
NSNH 14.5 10.9 a 134 a 10.5
NSH 14.9 8.2b 109 b 11.4
24-hH 17.3 9.7 ab 12.2 ab 11.0
1-hH 16.8 8.8b 12.6 ab 10.2
Significance” NS * ¥ * NS

“Electrolyte leakage (EL) was determined by taking three, 20 mm disc samples and
adding 20 mL of distilled water and shaken for 20 h, before reading first electrical

conductivity reading (EC) then autoclaved at 120 °C and cooled to room
temperature before second reading (EC,) [EL = (EC; + EC,) x 100].

YHeat event was expressed in a programmable growth chamber over three 24-hr
periods with 12-h days at 38.8 °C and 12-h nights at 32.2 °C.

*Treatments: NSNH = no spray no heat, NSH = no spray heat, 24-hH = Regalia

at 1x 24 h before heat event, 1-hH = Regalia at 1< 1 h before heat event.

NS " Indicates nonsignificant or significant at 7 < 0.05 or 0.01.
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Leaf surface temperature of Impatiens walleriana 'Super Elfin XP White'
measured using a IR Crop Temperature Meter (Spectrum Technologies
Inc, Plainfiled, IL) following application of Regalia (1x =10 mL-L") 24 h
or 1h before heat event with two nontreated control groups (0%): one kept
at 21.1 °C /18.3 °C (day/night) (NSNH) and one exposed to the heat event
[NSH (three 24-h periods with 12-h days at 38.8 °C and 12-h nights at
32.2 °C)]. *** Indicates significant differences between NSNH and NSH,
24-hH, and 1-hH at P < 0.001 (Expt. 2).
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Figure 5.2 Leaf surface temperature of Impatiens walleriana 'Super Elfin XP White'
measured using a IR Crop Temperature Meter (Spectrum Technologies
Inc, Plainfiled, IL) following application of MBI-501 (1x =2 mL-L") 24
h or 1h before heat event with two nontreated control groups (0x): one
kept at 21.1 °C /18.3 °C (day/night) (NSNH) and one exposed to the heat
event [NSH (three 24-h periods with 12-h days at 38.8 °C and 12-h nights
at 32.2 °C)]. ***Indicates significant differences between NSNH and
NSH, 24-hH, and 1-hH at P <0.001 (Expt. 3).
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CHAPTER VI
EVALUATING THE POTENTIAL OF REGALIA (AN EXTRACT OF REYNOUTRIA
SACHALINENSIS) TO INCREASE HEAT TOLERANCE OF SOLANUM

LYCOPERSICUM ‘BHN 640°

Abstract

High air temperatures can kill plant cells or severely reduce photosynthetic rates,
ultimately affecting plant growth. In the southeastern U.S., high air temperatures cannot
be avoided, especially in the summer months. Therefore, plant protectants such as
Regalia, could be beneficial if they can provide protection or heat tolerance after
application. Regalia was applied at 1x (10 mL-L™) to Solanum lycopersicum ‘BHN 640’
(tomato) plants either 24 h (24-hH) or 1 h (1-hH) before being exposed to a heat event.
The heat event was expressed over three, 24-h periods with 12-h days at 44 °C and 12-h
nights at 33 °C. There were two control treatments, one with plants maintained at 24 °C
day and 21 °C night temperatures (NSNH) and one with plants exposed to the heat event
(NSH). Total growth (TG), shoot dry weights (SDW), specific leaf weight (SLW), and
number of opened flowers (F) were measured at the close of the experiment. Gross
photosynthesis (Pgross) was determined by measuring photosynthesis (Pn) and
respiration (Rp) before the heat event (pre), the day after the heat event (post) and 3, 6, 9
and 12 days after for a total of six measurements (post3, post6, post9, and post12).

Tomato plants exposed to the heat event all had less TG, SDW, and F compared to
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NSNH tomato plants. Pgross was greater in NSNH treated tomato plants when measured
post and post3 compared to NSH, 24-hH, and 1-hH plants. Data did indicate differences
among treatments; however, there were no differences between plants exposed to the heat
event and treated with Regalia (24-hH and 1-hH) compared to the nontreated ‘BHN 640’

tomato plants exposed to the heat event (NSH).

Introduction

Under high temperatures, photosynthesis in plants is affected, specifically the
photosynthetic activity of chloroplasts (Wise et al., 2004; Allakhverdiev et al., 2008).
Under normal conditions, photosynthesis converts light energy into chemical energy for
use in the plant. Photosynthesis takes place in the leaves specifically in the chloroplasts
using chlorophyll as the receptor molecule. In heat stressed plants, photosynthesis is
altered and plant growth is affected. There are many processes involved in
photosynthesis and it only takes alteration of one of those processes to affect plant growth
(Wahid et al., 2007).

In tomato leaves, the failure of photosynthetic electron transport at elevated
temperatures affects the thermolability of photosystem II (PS II) (Ogweno et al., 2009).
Inhibiting or reducing PS 1II activity can lead to separation or inhibition of the oxygen
evolving complex (OEC) altering the energy distribution of photosynthesis, changing the
carbon metabolism enzymes, disrupting the electron transport, and deactivating the
oxygen evolving enzymes of PS I (Wahid et al., 2007).

High temperatures can also induce oxidative stress. Oxidative stress resulting

from high temperature can activate plant cell signaling pathways to produce stress
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proteins (Bajguz and Hayat, 2009). When plant cells are injured due to high temperatures
they will generate reactive oxygen species (ROS) (Asthir et al., 2009). ROS are
byproducts of plant metabolism and are vital for plant growth even though they are
highly toxic due to their oxidative abilities (Robert et al., 2009). Formation of ROS
begins with the excitation of triplet ground state oxygen (O>) to form singlet oxygen
('0,), reduction of one electron to form superoxide radical (O, "), reduction of two
electrons to form hydrogen peroxide (H,O5), or the reduction of three electrons to form a
hydroxyl radical (HO ) (Mittler, 2002). Chloroplasts are the main intracellular ROS
source in plants (Robert et al., 2009) and the most heat sensitive cell function due to their
photosynthetic activity (Allakhverdiev et al., 2008). During photosynthesis and
respiration, the plant is steadily producing ROS and the state of the cell is controlled by
protective mechanisms (Bajguz and Hayat, 2009). If these protective mechanisms are
disturbed, oxidative damage can result in death of the cell. Under regular growth
conditions, ROS production is very low; however, under heat stress the production is
increased. This increased production of ROS causes lipid peroxidation, protein
denaturation, and DNA damage (Asthir et al., 2009). Since ROS are highly reactive,
plants have developed protection mechanisms against oxidative damage in the form of
antioxidant enzymes. These antioxidant enzymes, such as SOD, catalase (CAT),
peroxidase (POX), ascorbate-peroxidase (APX), glutathione reductase (GR) and
glutathione-S-transferase (GST) scavenge the plant for excited oxygen species caused by
stress (Mittler et al., 2004; Wu and von Tiedemann, 2002; Gill and Tuteja, 2010; Zhang

et al., 2010). The searching for O, by SOD produces H,O, which is then removed by
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APX or GR in the ascorbate-glutathione cycle (Cigek and Cakurlar, 2008).

Solanum lycopersicum (garden tomato) is a member of the nightshade family
(Solanaceae) in which there are 42 genera. Solanum species can be annual or short-lived
perennials; however, the tomato, which is a perennial, has traditionally been cultivated as
an annual (Tigchelaar, 1986). The garden tomato is self pollinated and has been
cultivated for years across the globe for its fresh market use as well as for processing
(paste, juice, sauce, powder, or whole) (Barone et al., 2009). They are valuable not only
nutritionally, but have also been linked to protect against diseases such as cancer and
cardiovascular disease because of antioxidant properties (lycopene) (Barone et al., 2009).

Tomatoes are produced globally and considered the second most popular
vegetable crop in the world. They are native to South America but have adapted to very
diverse environments (Barone et al., 2009). While they will grow in high temperatures,
fruit production decreases in temperatures over 32.2°C (89.6°F) and below 21°C (69.8°F)
(Lin et al., 2006). For many years the breeding objectives have been to increase fruit
production in high temperatures (Hanson et al., 2002). Therefore, the objective of this
experiment was to evaluate Regalia for improving heat tolerance of tomato plants.

Materials and Methods

Plant Material and Culture

Tomato seed (‘BHN 640°) were sown in 72-cell (41 mL) liners using Sunshine
Mix 1 (SunGro Horticulture, Bellvue, WA) as the potting substrate on June 17, 2011.
Three weeks later, liners were transferred to 15-cm containers and grown in a greenhouse

located at Mississippi State University’s R.R. Foil Plant Science Research Facility.
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Tomato plants were grown for an additional three weeks to allow rooting and venting

temperatures inside the greenhouse were set to 18.3/15.5 °C day/night (actual greenhouse
temperature on average was 27.5 °C day and 24.0 °C night). Fertilizer was applied with
irrigation at 200 ppm N using Peter’s Professional 20N-8.8P-16.6K (20-10-20) Peat-Lite

Special (Scotts, Maryville, OH).

Treatments and Heat Event

Single, foliar applications of Regalia [1x = 0.48 g ai-L" (10 mL-L™)] were applied
using a hand held sprayer (Model # 20010 with a 301120-4 brass nozzle, Chapin
International, Inc., Batavia, NY) 24 h before heat the event (24-hH) and 1 h prior to the
heat event (1-hH). Heat event was expressed over three 24-h periods with 12-h days at
44 °C (111.2 °F) and 12-h nights at 33 °C (91.4 °F). There were two control treatments,
one with plants maintained at 24 °C day and 21 °C night temperatures (NSNH) and one
with plants exposed to the heat event (NSH). The experiment was conducted using a

complete randomized design and six single plant replications.

Data Collected

To evaluate plant responses to heat treatments, initial growth indices (GI) and
final GI [GI = (height + width + perpendicular width) + 3] were used to determine total
growth [TG = (final GI - initial GI)]. At the close of the experiment, shoot dry weight
[SDW (Shoots were harvested by cutting the entire plant at the soil line removing all
upper portions of plant material, then oven dried at 65 °C for 72 h)], final specific leaf

weight [SLW (SLW was determined as previously described by Lasseigne et al., (2007)
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as leaf dry weight per leaf area, g-cm?)], and number of open flowers (F) were measured
or collected. Additionally, leaf samples (2 fully expanded leaves per plant were excised
immediately after the heat event and frozen in liquid nitrogen before storing in a -80 °C
cooler for determination of glutathione reductase, and glutathione-S-transferase) were
collected at the close of the experiment. Leaf surface temperature (LST) was measured
each day of the heat event using an infrared gun (IR Crop Temperature Meter, Spectrum
Technologies Inc., Plainfield, IL) at 1000HR and 1400HR on 4 mature leaves.
Photosynthesis (Pn) and respiration (Rp) were measured before (pre) and at the end of the
heat event (post), and at 3 (post3), 6 (post6), 9 (post9) and 12 (post12) days after the heat
event to determine gross photosynthesis [Pgross = (Pn + Rp)]. Pn was measured using a
CIRAS-2 (PPSystems, Amesbury, MD) by placing the cuvette on the most recent mature
leaf. Rp was measured on the same leaf as Pn, after exposing the plants to 30-min of dark

(Gratani et al., 2011).

Antioxidant enzyme extractions and assays

Crude enzyme was extracted with 1 mL of a 50 mM sodium phosphate buffer (pH
7.5) as previously described by Venisse, et al. (2001), then centrifuged at 14,000g at 4 °C
until plant tissue was clearly separated from the 1 mL of extraction buffer (20 to 40
minutes) (Appendix A and B.1).

Protein content was determined for each sample according to Bradford (1976)
using a Quick Start Bradford Protein Assay Kit #1 (500-0201, Bio-Rad Laboratories

Headquarters, Hercules, CA) (Appendix B.2).
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Glutathione reductase (GR) was assayed as previously described (Esterbauer and
Grill, 1978) with modifications as follows (Appendices B.3). Samples were analyzed
using a PowerWave HT Microplate Spectrophotometer (BioTek Instruments, Inc.
Winooski, VT) at 340 nm for 10 min. Each well contained 15uL of plant sample and
200uL of reaction buffer [0.1 mM Tris-Hydrochloride pH 7.8 (M.W. 157.6), 1%
ethylenediaminetetraacetic acid disodium salts (M.W. 372.24), 1% bovine serum albumin
(Bio-Rad #500-206 2mg/mL), and 8.4 mM of B-nicotinamide adenine dinucleotide
phosphate (NADPH M.W. 833)]. Activity was determined following the reduction of
one unit of GR which catalyzes 1pmol NADPH per minute at pH 7.6 at 25 °C (extinction
coefficient of 6.2 mM"-cm™). GR specific activity was expressed as punits-mg”
(Appendix B.3).

Glutathione-S-transferase (GST) was assayed as previously described by Venisse
et al. (2001) with some modifications. Samples were analyzed using an ELx808
Absorbance Microplate Reader with a UV filter (BioTek Instruments, Inc.) at 340 nm for
5 min. Each well contained 20uL of plant sample and 230uL of reaction buffer [0.1 M
potassium phosphate buffer (pH 6.5), 3.6 mM reduced glutathione (M.W. 307.3), 100
mM 1-chlor-2,4-dinitrobenzene (CDNB M.W. 202.6)]. Activity was determined by
following the formation of the conjugate of 1umol of CDNB with reduced glutathione
per min at pH 6.5 at 25 °C (extinction coefficient of 9.6 mM™-cm™). GST specific

activity was expressed as punits-mg” (Appendix B.4).
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Statistical Analysis

Analysis of variance (pooled across two experimental runs) was used to test
differences in TG, SDW, SLW, and F (SAS 9.2; SAS Institute Inc., Cary, NC). When
differences were found, the generalized linear model procedure was used with mean

separation according to Tukey’s Studentized range test, a. = 0.05.

Results

NSNH tomato plants had greater TG, SDW, and F compared to plants exposed to
heat event (Table 6.1). However, SLW was similar in NSNH tomato plants compared to
plants exposed to the heat event. LST was higher in plants exposed to the heat event
compared to the NSNH treatment (Fig. 6.1); however, there was no difference in LST
among plants exposed to the heat event and rate of Regalia. Pgross was similar among
all treatments prior to application of Regalia (Fig. 6.2). At post and post3, Pgross was
greater in the NSNH treatment compared to the NSH, 24-hH, and 1-hH treatments. Six
days after (post6) the heat event, Pgross was similar among treatments. GR, GST, nor
Protein was increased in ‘BHN 640’ tomato plants treated with Regalia prior to the heat

event (Table 6.2).

Discussion
High temperature can reduce or altogether cease plant growth due to inactivation
of PSII (Kadir et. al., 2007). This was evident in this experiment with a reduction in
shoot growth among all plants exposed to the heat event. Initially, plants exposed to the

heat event had a 62% (post) and 39% (post3) reduction in Pn likely due to a reduction in
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PS 1II electron transport (Heckathorn et al., 1998) and higher leaf surface temperature
(Haldimann and Feller, 2005); however, by the end of the experiment there were no
differences in Pn. Furthermore, it was apparent plants were affected by the heat event but
there were no indications an application of Regalia protected or enhanced heat tolerance

in ‘BHN 640’ tomato plants.
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Figure 6.1 Leaf surface temperature (measured each day for 3 days during the heat
event at 1000HR and 1400HR) of Solanum lycopersicum 'BHN 640' tomato
plants measured using a IR Crop Temperature Meter (Spectrum
Technologies Inc, Plainfiled, IL): NSNH = no spray no heat (kept at 24 °C
/21 °C day/night), NSH = no spray heat (three 24-h periods with 12-h
photoperiods at 44 °C/ 33 °C day/night), 24-hH = Regalia (I1x =10 mL-L"
") 24 h before heat event, 1-hH = Regalia applied at 1x 1 h before heat.

* *#% significant differences between NSNH ‘BHN 640’ tomato plants
and NSH, 24-hH, and 1-hH at P < 0.05 or 0.001.
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Figure 6.2 Gross photosynthetic rate [Pgross = (net photosynthesis + respiration)] of
Solanum lycopersicum "BHN 640' plants after exposure to heat event (H =
three days at 44 °C /33 °C with 12-h day/night). There were four
treatments: no spray no heat (NSNH), no spray heat (NSH), Regalia (1x =
10 mL-L™") 24 h (24-hH) or 1 h (1-hH) before heat event. Pgross was
measured six times during the stress duration: pre = before H, post =
immediately after H, post3 = 3 days after H, post6 = 6 days after H, post9
=9 days after H, and post12 = 12 days after H. ** *** significant
differences between NSNH plants and NSH, 24-hH, and 1-hH at P < 0.01
or 0.001.
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CHAPTER VII
EVALUATING REGALIA FOR POTENTIAL TO INCREASE COLD TOLERANCE

OF FRAGARIA xANANASSA ‘CAMAROSA’ AND CITRUS UNSHIU ‘OWARD

Abstract

Fragaria xananassa ‘Camarosa’ (strawberry) plants were exposed to a chilling
event (15 h with a decrease in temperature from 12 °C to 0 °C by 4 °C-h™") 24 h after a
foliar application of Regalia at 0x or 1x (10 mL-L™), Expt. 1. At4 and 0 °C, leaf
samples were excised and prepared for percent electrolyte leakage (EL). Final growth
indices (FGI), shoot dry weight (SDW), and fruit yield were measured to determine if the
application of Regalia increased chilling tolerance. In Expt. 2, Citrus unshiu ‘Owari’
(satsuma) liners were sprayed with Regalia at 0x or 1x (10 mL-L™) 24 h prior to a freeze
event: a 14 h period in a programmable freezer with a 2 °C-h™' decrease in temperature.
There were 5 temperature set points (4, 0, -4, -8, and -12 °C) and at each set point the
temperature was held for one hour before leaf samples were pulled for EL assay. In Expt.
1, there were no differences in strawberry plants exposed to chilling versus nonchilling
temperatures. In Expt. 2, EL was greater in satsuma leaves exposed to 0 °C, -4 °C, -8 °C
and -12 °C compared to the nontreated (NSNF). EL injury was a good indication the
freeze event was successful in testing cold tolerance; however application of Regalia did

not enhance or increase cold tolerance in satsuma liners.
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Introduction

In 2007, the southeastern U.S. had abnormally warm temperatures in the month of
March and the following month experienced record lows (NOAA, 2007). Due to the
mild temperatures in March, many ornamental plants throughout the southeast initiated
bud break which led to significant crop losses when the temperatures dropped in April.
The damage was so extensive the browning of vegetation could be seen by space
satellites. This injury was a result of plants deacclimating with the exposure to the
warmer temperatures of March, initiating new growth (Ferguson, 1995). Once the new
growth was initiated, the plants were no longer acclimated to the cooler temperature.
Therefore, when the temperature dropped below normal in April, the plants were injured.

One of the major stress factors affecting plant growth and productivity is chilling
or freezing injury. Chilling injury occurs when temperatures are low but not below
freezing (0 °C) (Zhang et al., 2009) and freeze injury occurs below 0 °C (Jan et al.,
2009). Chilling injury can cause discoloration, photoinhibition, dehydration, and
membrane fluidity (Solanke and Sharma, 2008; Wolfe, 1978). Freeze injury usually
occurs by the formation of ice on the outside of the plant which then progresses into the
cells of the plant through diffusion (Uemura and Steponkus, 1999). A plant’s response to
cold stress depends upon its physiology and biochemistry (Pagter et al., 2008) which can
be related to its origin (Jan et al., 2009). Temperate region plants can increase their
freezing tolerance when exposed to low non-freezing temperatures, whereas tropical and
subtropical species are more sensitive to chilling and typically lack the ability to

acclimate to cold temperatures (Jan et al., 2009).
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Extract of Reynoutria sachalinensis (giant knotweed), also known as Regalia, is
distributed by Marrone Bio Innovations as an organic fungicide with activity against
powdery mildew, gray mold, and blights (Marrone Bio Innovations, 2011). Regalia’s
indirect mode of action is seen through the increased production of phytoalexins which
strengthen the plant’s immune system (Konstantinidou-Doltsinis and Schmitt, 1998).
After a plant has been affected by a biotic or abiotic agent, phytoalexins (antimicrobial
compounds) are synthesized as a defense mechanism (Vasconsuelo and Boland, 2007).
Some of these phytoalexins are lytic enzymes, such as chitinases and glucanases,
oxidizing agents, cell wall lignifications, pathogenesis-related proteins, and transcripts of
unknown functions (Mert-Tiirk, 2002). Additionally, Regalia has been reported to
increase chlorophyll values and the activity of peroxidases, polyphenoloxidases, and Phe
ammonia-lyase (Daayf et al., 1997). Peroxidases are involved in lignin polymerization,
cross-linkage of cell wall constituents, catabolism of auxin, formation of ROS, and
defense against pathogenic organisms (Bakalovic et al., 2006). Lignin polymerization
provides rigidity and structural support to cell walls (Kédrkonen and Koutaniemi, 2010).
Thus, if application of Regalia increases peroxidases, it could result in heightened lignin
polymerization and result in a more rigid cell wall preventing extreme cell dehydration to
freezing temperatures.

The objective of these experiments was to evaluate Regalia for increasing chilling
and freezing tolerance of Fragaria *ananassa ‘Camarosa’ (Expt. 1) and Citrus unshui

‘Owart’ (Expt. 2).
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Materials and Methods

Experiment 1

Plant Material and Culture

On 21 October 2010, Fragaria *ananassa ‘Camarosa’ (strawberry) (Triple J
Nursery, Hayden, AL) liners were potted into 15.5-cm azalea containers with Sunshine
Mix 1 (SunGro Horticulture, Bellvue, WA) potting substrate. After potting, plants were
moved to a single hoop style high tunnel with straight raisable sidewalls, located on
Mississippi State University’s R.R. Foil Plant Science Research Facility for vernalization.
Plants were hand watered as needed and fertilizer was applied with irrigation at 200 ppm
N using Peter’s Professional 20N-8.8P-16.6K (20-10-20) Peat-Lite Special (Scotts,
Maryville, OH). During the winter months, the outside temperature was closely
monitored and when temperature dropped below -2 °C, the sidewalls were lowered and

temperature was monitored inside the high tunnel.

Chilling Stress and Treatments

In late February 2011 (18.7 °C/14.4 °C average high/low), the strawberry plants
started flowering. On 5 March 2011 (19.8 °C/9.9 °C), plants were sprayed with Regalia
at 0x or 1x rate 24-h before the chilling event (24-hC). Regalia was applied using a hand
held sprayer (Model # 20010 with a 301120-4 brass nozzle, Chapin International, Inc.,
Batavia, NY) as a foliar spray based on the label rate of 0.48 g ai-L" (10 mL-L™"). The
following day chilling treatment was initiated at 1700 HR by placing plants in an

environmental growth chamber (Percival Scientific Inc., Perry, IA) for a total of 15 h in
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the dark. Temperature was lowered from 16 °C by 4 °C-h”" until reaching 0 °C and held
for 8 h. Strawberry plants exposed to the chilling event remained in the growth chamber
for 1 h after the 8 h of chilling and temperature was raised at a rate of 4 °C-h”', then
returned to high tunnel. There were also two nonsprayed controls: one was left in the
high tunnel (NSNC) and one was exposed to the chilling treatment (NSC). Expt. 1 was

conducted using a complete randomized design with 6 single plant replications.

Electrolyte leakage

Flower bud samples were taken from nontreated plants left in the high tunnel at
1730 HR for determination of electrolyte leakage as previously described by Carter et al.
(1999) with modifications. After chilling treatment had initiated, flower bud samples
(bud stage with visible white petals) were taken after 30 min of exposure to 4 °C and
after 30 min of exposure to 0 °C for determination of electrolyte leakage (ELemp).
Twenty-four hours after chilling treatment, flower buds were taken for final electrolyte
leakage (ELfinar) determination. Electrolyte leakage for ELiemp and EL a1 were determined
as described by Nesbitt et al. (2002) with modifications. EL was determined by placing
two flower buds cut in half into 50 mL vials filled with 20 mL of distilled water.
Samples were then placed on a shaker for 12 h before taking the first electrical
conductivity reading (EC;) then autoclaved at 120 °C and shaken an additional 12 h

before taking the second reading (EC,) [EL = (EC,; + EC,) x 100].
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Enzyme extractions and assays

Immediately after 8 h of chilling, leaf samples (4 mature leaves) were taken and
frozen in liquid nitrogen and stored in a -80 °C freezer.

Crude enzyme (0.2 g of frozen tissue) was extracted with 1 mL of a 50 mM
sodium phosphate buffer (pH 7.5) as previously described (Venisse, et al., 2001), then
centrifuged at 14,000g at 4 °C until plant tissue was clearly separated from the 1 mL of
extraction buffer (20 to 40 minutes) (Appendix A and B.1).

Soluble protein (SP) content was determined for each sample according to
Bradford (1976) using a Quick Start Bradford Protein Assay Kit #1 (500-0201, Bio-Rad
Laboratories Headquarters, Hercules, CA) (Appendix B.2).

Glutathione reductase (GR) was assayed as previously described by Esterbauer
and Grill (1978) (Appendices B.3). Samples were analyzed using a PowerWave HT
Microplate Spectrophotometer, BioTek Instruments, Inc. (Winooski, VT) at 340 nm for
10 min. Each well contained 15uL of plant sample and 200uL of reaction buffer [0.1
mM Tris-Hydrochloride pH 7.8 (M.W. 157.6), 1% ethylenediaminetetraacetic acid
disodium salts (M.W. 372.24), 1% bovine serum albumin (Bio-Rad #500-206 2mg/mL),
and 8.4 mM of B-nicotinamide adenine dinucleotide phosphate (NADPH M.W. 833)].
Activity was determined following the reduction of one unit of GR which catalyzes
1pumol NADPH per minute at pH 7.6 at 25 °C (extinction coefficient of 6.2 mM"-cm™).
GR specific activity was expressed as punits-mg” (Appendix B.4).

Glutathione-S-transferase (GST) was assayed as previously described by Venisse

et al. (2001) with some modifications. Samples were analyzed using an ELx808
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Absorbance Microplate Reader with a UV filter (BioTek Instruments, Inc., Winooski,
VT) at 340 nm for 5 min. Each well contained 20uL of plant sample and 230uL of
reaction buffer [0.1 M potassium phosphate buffer (pH 6.5), 3.6 mM reduced glutathione
(M.W. 307.3), 100 mM 1-chlor-2,4-dinitrobenzene (CDNB M.W. 202.6)]. Activity was
determined by following the formation of the conjugate of 1umol of CDNB with reduced

glutathione per min at pH 6.5 at 25 °C (extinction coefficient of 9.6 mM™-cm™).

Yield

On 1 April 2011, strawberry fruit were harvested every two days and rating of the
strawberries was based on the USDA Strawberry Grading criteria (Table 7.1) (USDA,
2006). Fruit was collected until there was no marketable berry based on USDA criteria

for marketable strawberries.

Shoot growth

Initial growth indices and final growth indices [GI = (height + width +
perpendicular width) + 3] were used to determine total growth [TG = (final GI - initial
GI)]. Additionally, shoot dry weight [SDW (shoots were harvested by cutting the entire
plant at the soil line removing all upper portions of plant material then oven dried at 65
°C for 72 h)] was determined at the close of the experiment.
Statistical Analysis

An analysis of variance procedure (data pooled across two experimental runs) was

used to test the effects of chilling and Regalia application on TG, SDW, Yield, Grade,
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ELtemp and ELFina. All statistical analysis were performed using the generalized linear

model procedure of SAS (version 9.2, SAS Institute Inc, Cary, NC), a = 0.05.

Experiment 2

Plant Material and Culture

On 26 January 2011, 60-cm bare root Citrus unshiu ‘Owari’ (satsuma) liners
grafted onto Poncirus trifoliata rootstock (Willits and Newcomb, Bakersfield, CA) were
potted into 9.6-L (2.5 gal) treepots (Stuewe and Sons, Inc. Tangent, OR). Potting
substrate was a 3 pine bark: 1 sand (v:v), amended with 3.56 kg:-m™ of 16-6-12 Harrell’s
(Harrell’s, Lakeland, FL) 3 to 4 month control release fertilizer with micronutrients, 3.07
kg-m™ of dolomotic lime, and 0.89 kg-m™ Micromax micronutrients (Micromax; The
Scotts Co., Marysville, OH). At time of potting, Subdue Maxx (Syngenta, Wilmington,
DE) 0.2 mL-L" was applied to the container substrate. Satsuma liners were placed in a
greenhouse and maintained at 23.9/21.1 °C (day/night) to allow rooting. In June 2011,
venting temperature inside the greenhouse was lowered to 18.3/15.5 °C day/night (actual
greenhouse temperature on average was 27.5 °C day and 24.0 °C night from June to
September) and substrate was top dressed with 3.56 kg:m™ of 16N-6P-12K Harrell’s.
Due to the extreme heat experienced during the summer months, a 20% shade cloth was

placed over the greenhouse to alleviate heat stress.

Cold Acclimation
Prior to acclimation (at least 1 week) actual greenhouse temperature averaged

22.5 °C/18.7 °C (day/night). Acclimation was conducted in an environmental growth
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chamber (Percival Scientific Inc.) and modified as described by Ebel et al. (2004). At
initiation of acclimation, satsuma liners had started naturally acclimating to short days.
Therefore, 8 February 2012 satsuma liners were placed in the growth chamber at 20/11
°C (68/51.8°F) for 7 days under 11-h day and 13-h nights15/7 °C and on 15 February
2012 temperature was lowered to 15/7 °C (59/44.6°F) under 10.5-h day and 13.5-h nights

until initiation of the experiment.

Spray Treatment

Satsuma liners were divided into nontreated versus treated with Regalia at the 1x
rate [0.48 g ai-L™ (10 mL-L™)]: no spray and no freeze event [NSNF (kept at 15 °C)], no
spray exposed to freeze event (NSF), and Regalia applied at 1x, 24 h before the freeze
event (24-hF). Regalia was applied using a hand held sprayer (Model # 20010 with a
301120-4 brass nozzle, Chapin International, Inc., Batavia, NY). Expt. 2 was conducted

using a complete randomized design with 4 single plant replications.

Freeze treatment

Twenty-six leaves per replication (four replications) from satsuma liners were
excised from current year’s growth after application of Regalia. Leaves were placed in
the freezer with an initial temperature of 7 °C and lowered at a rate of 3 °C-h™" until
reaching 4 °C, then lowered at a rate of 2 °C-h™" and held for 1 h at each temperature
treatment (Hacker and Neuner, 2007, Ebel et al., 2004). Stress duration was a total of 14
h and leaves were sampled at 2 (4 °C), 5 (0 °C), 8 (-4 °C), 11 (-8 °C), or 14 h (-12 °C)
before being withdrawn and placed at 4°C. All Samples remained at 4 °C until all leaves
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had been sampled and thawed for 12 h (Pagter et al., 2008; Carter et al., 1999; Rajashekar

et al., 1999).

Evaluation of Freeze Injury

Leaf samples were pulled after 1 h at each sample temperature for determination
of electrolyte leakage (EL) as described by Ebel et al. (2004) and antioxidant enzyme
analysis as described (Yang et al., 2011, Ehsani-Moghaddam et al., 2006) with the
following modifications: one leaf was used per vial for electrolyte leakage analysis and 5
leaves per vial for determination of antioxidant activity (glutathione reductase and
glutathione-S-transferase). EL was determined by first gently washing the leaves three
times with double distilled water then placing two 1.5-cm leaf disks into 50 mL vials.
Twenty mL of double distilled water was added to each vial and shaken for 24 h at 20 °C
before measuring with a conductivity meter (Pagter et al., 2008 and Nesbitt et al., 2002).
Samples were then autoclaved at 120 °C for 20 min and shaken for 24 h at 20 °C before
remeasuring conductivity. In addition, EL was determined for the double distilled water
to give the zero level of EC (Pagter et al., 2008). EL was determined as EL = [(EC#ozen-

Ecwater) = (Ecautoclave‘ Ecwater) X 100]

Antioxidant Enzyme extractions and assays

Leaf samples (5 mature leaves) were taken at each temperature treatment, frozen
in liquid nitrogen, and stored in a -80 °C freezer.

Crude enzyme (0.2 g of frozen tissue) was extracted with 1 mL of a 50 mM

sodium phosphate buffer (pH 7.5) as described by Venisse, et al. (2001), then centrifuged
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at 14,000g at 4 °C until plant tissue was clearly separated from the 1 mL extraction buffer
(20 to 40 minutes) (Appendix A and B.1).

Soluble protein (SP) content was determined for each sample according to
Bradford (1976) using a Quick Start Bradford Protein Assay Kit #1 (500-0201, Bio-Rad
Laboratories Headquarters, Hercules, CA) (Appendix B.2).

Glutathione-S-transferase (GST) was assayed as described by Venisse et al.
(2001) with some modifications. Samples were analyzed using an ELx808 Absorbance
Microplate Reader with a UV filter (BioTek Instruments, Inc., Winooski, VT) at 340 nm
for 5 min. Each well contained 20puL of plant sample and 230uL of reaction buffer [0.1
M potassium phosphate buffer (pH 6.5), 3.6 mM reduced glutathione (M.W. 307.3), 100
mM 1-chlor-2,4-dinitrobenzene (CDNB M.W. 202.6)]. Activity was determined by
following the formation of the conjugate of 1umol of CDNB with reduced glutathione

per min at pH 6.5 at 25 °C (extinction coefficient of 9.6 mM™-cm™) (Appendix B.4).

Statistical Analysis

A two-factor analysis of variance procedure (data was pooled across two
experimental runs) was used to test the effects of freezing and Regalia application on EL.
When differences were identified, data were analyzed with linear models using the
GLIMMIX procedure of SAS 9.2 (SAS Institute Inc, Cary, NC) with mean separation
according to the Holm-simulation method (o= 0.05). EL parameters were fit to
polynomial curves for each treatment when significant trends were identified using linear

models with the REG procedure of SAS 9.2 for each treatment.
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Results

Experiment 1

Daily air temperature was monitored at the experimental site from November
2010 to June 2011 (Fig. 7.1). During the chilling event (March 2011), the deviation in air
temperature for the plants exposed to the chilling event was also monitored (Fig. 7.2).
After chilling in a growth chamber, strawberry plants were returned to the high tunnel.
Over the next 3 weeks flowers developed into fruit and harvesting began on 1 April 2011
continuing until 17 May 2011. Peak harvest time for ‘Camarosa’ strawberries was
between 15 April and 5 May.

There were no significant differences in TG, SDW, Yield, and Grade between
treated and nontreated, or between chilled and non-chilled plants (Table 7.2). There
were no differences in ELtemp in strawberry plants exposed to chilling compared to no
chilling (Fig. 7.3). Twenty-four hours after chilling, ELrin. was similar between chilled
and non-chilled plants (Fig. 7.4). GR activity was similar in ‘Camarosa’ strawberry
leaves exposed to chilling compared to nonchilling leaves (Table 7.3). GST activity was
greater in the 24-hC treatment compared to NSC and NSNC leaves. SP content in leaves

was similar among all treatments.

Experiment 2

There were differences in EL between treatments and temperature (Table 7.4).
EL in satsuma leaves exposed to 4 °C (NSF and 24-hF) was similar to nontreated

(NSNF); however, satsuma leaves exposed to 0, -4, -8, and -12 °C (NSF and 24-hF) had
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greater EL compared to NSNF (Fig. 7.5). As temperature decreased, EL increased with
maximum injury at -8 °C.
There were no differences in GST activity or SP content between Regalia treated

and nontreated Satsuma leaves (Table 7.5).

Discussion

In Expt. 1, application of Regalia prior to a chilling event did not enhance growth
or yield in ‘Camarosa’ strawberry plants. There were approximately 40 d between time
of chilling event and peak harvest. During this period, flowers that went through the
chilling event were spent; however, new uninjured flowers emerged which would explain
a lack of differences in any of the parameters measured at the end of the experiment.

GST activity was similar in NSC leaves compared to NSNC leaves; however,
GST was greater in 24-hC leaves compared to NSNC leaves. Since GST is known to
increase in cold hardened plants (Janda et al., 2003), the application of Regalia applied
24-h before chilling may have induced GST activity.

The 15 h chilling event did not cause permanent injury to ‘Camarosa’ strawberry
plants. Nestby and Bjogum (1999) reported fruit yield for three strawberry cultivars
exposed to 0, -8, -12, and -16 °C. These findings suggest that if ‘Camarosa’ plants are
flowering and exposed to < 15 h of chilling, there is no permanent injury and yield is not
affected.

In Expt. 2, application of Regalia prior to a freeze event did not protect ‘Owari’
satsuma leaves from freeze injury, compared to the NSF plants. Low temperatures were

the determining factor and not the application of Regalia.
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GR was not analyzed for this experiment due to the lack of detection of GR as a
result of the leaves being absent from light while under the freeze treatment. It was not
unexpected there were no differences in GR content with freeze stress. GR is an
antioxidant enzyme predominantly produced in the chloroplasts (Gill and Tuteja, 2010).
While many reports have indicated increased GR activity in plants under stress, there are
reports indicating no change or decreases in activity. Lu et al. (2008) reported no change
in GR activity in Eupatorium odoretum exposed to cold stress but an increase when
exposed to high temperatures. Additionally, GR activity decreased in watermelon
(Citrullus lanatus [Thomb.] Mansf. cv. Dulce maravilla) exposed to 10 °C compared to
plants maintained at 35 °C (Rivero et al., 2002). Furthermore, it has been reported the
reduced form of glutathione (GSH) is light dependent (Noctor et al., 1997). GSH is
involved in many metabolic regulatory and antioxidative processes (Gill and Tuteja,
2010) and in order to control, GR is produced to catalyze GSH (Karuppanapandian et al.,
2011). Additionally, Robert et al. (2009) reported a direct correlation with the increase of
antioxidants produced in the chloroplasts (SOD, GR, and APX) with the increase in light
but a decrease in CAT, which is produced in the peroxisomes and mitochondria.

Typical label recommendation is to apply Regalia in 7 to 14 day intervals as a
disease preventative. Moreover, research has shown that exogenously applied ABA or
glycine betaine did not show an increase in accumulation until 42 to 72 hours after
application (Rajashekar et al., 1999). Therefore, future research could evaluate a four
week application of Regalia prior to exposing leaves to a freeze event. Results indicated

increased GST activity in strawberry leaves following the application of Regalia
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compared to the nontreated plants exposed to the same chilling conditions, which is
consistent with Regalia’s mode of action. While, Regalia may not be a quick response to
protect ‘Camarosa’ strawberry plants or ‘Owari’ satsuma leaves from chilling or freezing
temperatures, it does appear to enhance antioxidant activity in strawberry plants under

moderate or chilling conditions.

206



Table 7.1  Strawberry grading, based on United States Standards, Expt. 1.

Average Berry Grade Description
US#1 perfect, 100% red, size not less than 3/4"
Combined US#1 and US#2 combined, at least 80% #1 size,
no defects at least half pink/red
US#2 free from decay, not less than one-half pink or red,

Non-marketable

size not less than 5/8"

anything that does not fit into one of the the above
criteria
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Table 7.2  Total growth, yield, and grade of Fragaria *<ananassa
'Camarosa' strawberry plants sprayed with Regalia (1x =
10 mL- L']) 24 h before exposing to 0 °C for 8 h* (Expt. 1).

Treatments” TG (cm)* SDW (g)" Yield” Grade"
NSNC 7.5 10.0 16.2 28.0
NSC 7.1 9.2 17.1 28.9
24-hC 6.7 8.2 16.5 27.3
Significance’ NS NS NS NS

“Chilling event was expressed in a programmable growth chamber for a total
of 15 h in the dark. Temperature was lowered from 16 °C by 4 °C-h’’
until reaching 0 °C and held for 8 h.

YTreatments: NSNC = no spray with no chilling ecvent, NSC = no spray
with chilling event, and 24-hC = Regalia at 1x 24 h before chilling event.
NSNC treatment remained in a high tunnel suitable for southeast strawberry
production.

*TG: total growth, final growth indices (GI) - initial GI [GI = (height + width
+ perpendicular width)+3].

“SDW: shoot dry weight, oven dried for 72 h at 65 °C

"Yield: average number of fiuit per plant.

"Represents average grade given to fiuit quality based on US Strawberry

Grading Criteria.
NS Indicates nonsignificant difference at P < 0.05.
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Table 7.3  Glutathione reductase (GR), glutathione-S-transferase (GST), and protein

content in leaves of Fragaria xananassa 'Camarosa' affected by Regalia

application (1x = 10 mL-L-1), prior to exposure to 0 °C for 8 h”.

Treatments” GR (pumits'mg™) GST (ugmg ") Protein (ngmL™")
NSNC 3.02 0.19b 0.68
NSC 1.46 0.87b 0.57
24-hC 1.28 3.65a 0.63
Significance™ NS . NS

“Chilling event was expressed in a programmable growth chamber for a total of 15 h in
the dark. Temperature was lowered from 16 °C by 4 °C-h™" until reaching 0 °C and
held for 8 h.

YTreatments: NSNC = no spray with no chilling event, NSC = no spray with chilling
event, and 24-hC = Regalia at 1x 24 h before the chilling event. NSNC treatment
remained in a high tunnel suitable for southeast strawberry production.

*NS " Indicates nonsignificant or significant difference at P < 0.01.
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Table 7.4  Electrolyte leakage of Citrus unshiu 'Owart
satsuma leaves following application of Regalia
at the 1x (10 mL-L™") rate, prior to exposure to
freezing temperatures (Expt. 2).

Treatment” EL (%)”
NSNF 8.7 b*
NSF 69.1 a
24-hF 66.2 a
Temperature”
4 °C 7.1 c
0°C 439 b
-4 °C 60.2 a
-8 °C 65.5a
-12 °C 633 a
Trt <.0001"
Temp <.0001
TrtxTemp <.0001

“Treatments: NSNF = no spray no freeze, NSF = no spray
freeze, and 24-hF = Regalia applied at 10 mL- L'24h
before freeze.

YEL:e¢lectrolyte leakage determined as [(ECfrozen - ECwater)
+ (ECautoctave = ECyater) * 100].

*means with the same letters within treatment or temperature

are not statistically differnet according to the Holm-
simulation method for mean comparisons alpha=0.05.

“Temperature was decreased at 2 °C-h' and held for 1 h
at each set point: 4, 0, -4, -8, and -12 °C.
VP value.
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Table 7.5  Glutathione-S -transferase (GST) activity and soluble
protein (SP) content in leaves of Citrus unshiu 'Owart
affected by Regalia application (1x = 10 mL- L'l), prior
to exposure to freezing temperatures (Expt. 2).

Treatment GST (pu,lnits'mg‘l) SP (ug-mL‘l)
NSNF 94.1 a” 2.8 a
NSF 139.8 a 25a
24-hF 185.5a 24 a
Temperature™

4 °C 340.7 a 2.1a
0°C 111.2 a 24 a

-4 °C 109.0 a 3.1a

-8 °C 69.2 a 2.6 a

-12 °C 68.8 a 2.5a
Trt 0.6742" 0.2669
Temp 0.2900 0.0974
TrtxTemp 0.8962 0.7855

“Treatments: NSNF = no spray no freeze, NSF = no spray
freeze, and 24-hF = Regalia applied at 10 mL- L' 24h
before freeze.

Ymeans with the same letters within treatment or temperature
are not statistically differnet according to the Holm-
simulation method for mean comparisons alpha=0.05.

*Temperature was decreased at 2 °C-h’" and held for 1 h
at each set pomt: 4, 0, -4, -8, and -12 °C.
“P value.
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Figure 7.1 Average daily day and night air temperatures recorded in a high

tunnel located at the R.R. Foil Plant Science Research Facility,
Starkville, MS (33°28709,33” N and 88°46°59,09” W), measured 15-
cm from the ground, November 2010 to June 2011 (Expt. 1).
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Figure 7.2 On 5 March 2011, air temperature was recorded from 1700 HR (1 h) to
0900HR the following morning (17 h) monitoring Fragaria X ananassa
'Camarosa' strawberry plants; chilled plants went through a 15 h chilling
event in a growth chamber (no light) where temperature was controlled at
0 °C for 8 h. Non-chilled plants remained in a high tunnel overnight,
typical of those used for Southeast strawberry production (Expt. 1).
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Figure 7.3 Electrolyte leakage (EL) of Fragaria xananassa ‘Camarosa’ strawberry
plants exposed to 4 °C and 0 °C compared to no chilling (NC), following
application of Regalia (1x =10 mL-L"). Treatments were no spray no
chilling (NSNC), no spray chilling (NSC), and Regalia applied at 1x 24 h
before chilling (24-hC). EL was determined by placing two flower buds
cut in half into 20 mL of distilled water and shaken for 12 h before taking
the first electrical conductivity reading (EC;) then autoclaved at 120 °C
and shaken an additional 12 h before taking the second reading (EC,) [EL
= (EC, + EC,) x100]. ™, indicates nonsignificant difference P < 0.05
(Expt. 1).
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Figure 7.4 Electrolyte leakage (%) of Fragaria xananassa ‘Camarosa’ 24 h after

exposure to 0 °C compared to no chilling, following application of Regalia
(1x =10 mL-L™"). Treatments were no spray no chilling (NSNC), no
spray chilling (NSC), and Regalia applied at 1x 24-h before chilling (24-
hC). EL was determined by placing two flower buds cut in half into 20 mL
of distilled water and shaken for 12 h before taking the first electrical
conductivity reading (EC,) then autoclaved at 120 °C and shaken an
additional 12 h before taking the second reading (EC;) [EL = (EC, + EC,)
x100]. ™, indicates nonsignificant difference P < 0.05 (Expt. 1).
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Figure 7.5 Electrolyte leakage (EL) of Citrus unshui 'Owari' satsuma leaves: no spray
no freeze event [NSNF (leaves were sampled and kept at 15°C], no spray
freeze event (NSF) and Regalia applied 24 h 1x = 10 mL-L™") before
freeze event (24-hF). Freeze event was conducted in a programmable
freezer lowered at 2 °C+h™ and held for 1 h before leaves were sampled at
2 (4°C), 5 (0°C), 8 (-4°C), 11 (-8°C), and 14 (-12°C). EL at each
temperature and fit to a regression model yielding the following equations:
NSNF, y =9.78 + 0.23temp + O.O2temp2; NSF, =-14.0 + 57.3*temp -
9.89*temp’; 24-hF = 9.9+ 50.7temp - 7.70temp” (Expt. 2).
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CHAPTER VIII

CONCLUSIONS

Plant health protectants are reported to increase frost tolerance, heat tolerance and
drought tolerance in some agronomic crops; however, research with ornamentals is
limited or nonexistent.

Impatiens are a common ornamental bedding plant for the southeastern U.S. They
bloom from spring into fall and prefer shaded environments which can help ease the
stress caused by the high temperatures and minimal rainfall, typically seen in July and
August. However, because of the intense heat in the southeast, injury symptoms
associated with heat and drought stress are typically seen in impatiens via wilted leaves.

Pageant (pyraclostrobin + boscalid) increased shoot growth in well watered
‘Super Elfin XP White’ impatiens following 4 weekly applications. However, there was
no indication Pageant treated impatiens had enhanced tolerance to water stress since
enhanced shoot growth was only seen in impatiens maintained at 85% following weekly
applications of Pageant at the 1.0x rate.

Growth differences in ‘Super Elfin XP White’ impatiens and ‘BHN 640’ tomato
plants following weekly applications of Regalia and MBI-501 were observed. Regalia
applied to moderately water stressed impatiens and tomato plants at the 0.5x rate

increased leaf chlorophyll content and photosynthetic rate compared to the nontreated.
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WUE was improved in impatiens following application of MBI-501 at the 1.5x rate;
however, there was a negative effect on Wy, following the 1.5% rate of MBI-501.
However, the main interests of these experiments were to see if drought tolerance was
enhanced following the application of Regalia or MBI-501. While there were
indications Regalia or MBI-501 enhanced growth or water relations in impatiens and
tomato plants, results tended to be correlated with higher and moderately water stressed
conditions and not drought conditions.

Application of Pageant, Regalia, or MBI-501 to impatiens exposed to a three day
heat event did not increase tolerance to heat. Wilted leaves and an increase in
photosynthetic rate were seen in impatiens exposed to ~ 10°C above growing
temperatures. However, the impatiens (with or without application of plant protectant)
were able to recover three days after heat event. Therefore, exposing impatiens to 12-h
days at 32.2°C (90 °F) and 12-h nights at 28 °C (83 °F) was not a severe heat stress.
Furthermore, there was no evidence indicating increased heat tolerance of impatiens after
application of Pageant.

GR activity was greater in impatiens exposed to 14-h days at 38°C (100.4°F) and
10-h nights at 32.2°C (90°F) compared to 21.1°C/18.3°C (day/night) temperatures;
however, there was no difference between rate of Regalia and exposure to high
temperatures. While the heat event did effect metabolic changes, there were no

indications Regalia enhanced heat tolerance of impatiens.
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Impatiens exposed to 14-h days at 38°C (100.4°F) and 10-h nights at 32.2°C
(90°F) and treated with MBI-501 resulted in similar EL values 1 and 9 days after the heat
event. Therefore, MBI-501 did not increase heat tolerance to impatiens.

Shoot growth was significantly less in tomato plants exposed to 12-h days at 44
°C (111.2 °F) and 12-h nights at 33 °C (91.4 °F) compared to plants at 24 °C day and 21
°C night temperatures. Additionally, there was a reduction in photosynthesis (Pn) in
plants exposed to the higher temperatures; however, by the end of the experiment there
were no differences. It was apparent plants were affected by the heat event but there
were no indications application of Regalia protected or enhanced heat tolerance in ‘BHN
640’ tomato plants.

Application of Regalia prior to a chilling event (4°C to 0 °C for 15 h) did not
enhance growth or yield in ‘Camarosa’ strawberry plants; however, there was an increase
in antioxidant activity. There was around 40-d from time of chilling event and peak
harvest. During this time frame, the flowers that went through the chilling event were
spent; however, new uninjured flowers emerged which would explain no differences in
any of the parameters measured at the end of the experiment. The development of new
uninjured flowers also indicates the chilling event did not damage developing flowers
which would have decreased yields.

Application of Regalia prior to a freeze event (temperature set points were 4, 0, -
4, -8, and -12 °C for 1 h) did not protect satsuma leaves from EL injury, compared to the
no spray freeze treated plants. Low temperatures were the determining factor regarding

EL damage.
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Since there are contradicting reports about the use of strobilurins and other plant
health protectants in regards to plant health, further research in ornamentals is warranted.
Additionally, there was an increase in leaf chlorophyll content, higher photosynthetic
rate, increased antioxidant activity and greater soluble protein content following Regalia
application. However, these results may not be seen in every plant or every stress
condition, therefore, individual assessment on stress tolerance or enhancements under
stress should be determined before trying to use these products as a plant health
protectant. Research is particularly warranted in controlled environment production since
few if any researchers have reported success when conducting studies with these plant

protectants on ornamentals in controlled environments.
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APPENDIX A

BUFFER PREPARATIONS
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A.l.

A2.

A3.

50 mM sodium phosphate buffer (pH 7.5)

a. Sodium phosphate monobasic stock - 100 mL
= add 100 mL of distilled water to stock container
=  weigh out 55.2 g of 2 M sodium phosphate monobasic (M.W. 137.99) and
add it to the stock container filled with 100 mL of distilled water
* finish adding the required amount of distilled water to reach 200 mL
= place a stir bar in the bottle and place on low heat and low stir until
dissolved

b. Sodium phosphate dibasic stock - 100 mL
= add 100 mL of distilled water to stock container
= weigh out 56.8 g of 2 M sodium phosphate dibasic (anhydrous M.W.
141.96)
* finish adding the required amount of distilled water to reach 200 mL
= ifneeded place on a hot/stir plate to dissolve

1 mM penylmethylsulfonyl fluoride (PMSF) stock solution

a. Get a 50 mL plastic vial and cut a piece of parafilm large enough to wrap
around vial

Fill vial with 20 mL of isopropanol

Weigh out 0.87 g of PMSF and add to vial containing 20 mL of isopropanol
Add enough isopropanol to bring vial to 50 mL

Close lid and wrap with parafilm, store at 4°C (refrigerator)

oac o

Plant Extraction Buffer
a. 100 mL stock solution

add a small amount of cold distilled water to stock container

pipette 400 uL of sodium phosphate monobasic into container

pipette 2100 pL of sodium phosphate dibasic into container

weigh out 0.8g of 1 mM polyethyleneglycol (PEG) (MW 8000) and add to
container
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AA4.

AS.

A.6.

= weigh out 8 g of 8% polyvinylpyrolydine (M.W. 40000) and add to
container

= pipette 100 pL of 0.01% Triton X-100 to container

= bring volume to 100 uL with cold distilled water

= store at 4°C (refrigerator)

200 mL stock solution

add a small amount of cold distilled water to stock container

pipette 800 uL of sodium phosphate monobasic into container

pipette 4200 pL of sodium phosphate dibasic into container

weigh out 1.6g of 1 mM polyethyleneglycol (PEG) (MW 8000) and add to

container

= weigh out 16 g of 8% polyvinylpyrolydine (M.W. 40000) and add to
container

= pipette 200 pL of 0.01% Triton X-100 to container

= Dbring volume to 100 pL with cold distilled water

= store at 4°C (refrigerator)

1 M Tris/HCL buffer (pH 7.8) stock solution

ISE

add 200 mL of distilled water to stock container

weigh out 63.04 g of Tris/HCL M.W. 157.56

add Tris to distilled water and check pH before adding any more distilled
water

if pH is not 7.8 then add either HCL (to lower the pH) or NaOH (to raise pH)
once pH has reached 7.8 then add remaining volume of distilled water (200
mL) to bring it to desired volume of 400 mL

0.5 M EDTA stock solution

ac o

add 50 mL of distilled water to stock container

weight out 18.6 g EDTA M.W. 372.24

add EDTA to distilled water and swirl container to mix

add the remaining volume of distilled water (50 mL) to bring it to the desired
volume of 100 mL (if EDTA will not dissolve place on low heat)

NADPH stock solution stored in aliquots of 700 and 300 pL, stored at -20°C.

a.

NADPH stock solution
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AT,

A8

A9

A.10

A.ll

0.0294 g of NADPH, M.W. 833 added to 4.2 mL distilled water stored at -20°C
in aliquots of 700 or 300 uL

Oxidized Glutathione stock solution stored at -20°C
a. Oxidized Glutathione stock solution
= 0.306 g of Oxidized Glutathione M.W. 612.7 added to 10 mL distilled
water stored at -20°C in aliquots of 350 or 225 pL
= 25 tubes have 350 uL and 4 tubes have 225 uL

2 M potassium phosphate monobasic stock solution

a. 2.72 g of potassium phosphate monobasic (M.W. 136.09) added to 10 mL of
distilled water

2 M potassium phosphate dibasic stock solution

a. 3.48 g of potassium phosphate dibasic (M.W. 174.18) added to 10 mL of
distilled water

3.6 mM reduced glutathione stock solution (M.W. 307.3)

a. 1.106g reduced glutathione + 10 mL distilled water and aliquoted into 600 pL
and stored at -20°C

1 mM 1-chlor-2,4-dinitrobenzene (M.W. 202.55)

a. mixed as a 100 mM stock consisting of 0.405g CDNB + 20 mL ethanol,
stored at -20°C
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APPENDIX B

LABORATORY PROCEDURES
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Plant Extraction Protocol - (Venisse et al., 2001 with modifications)

1. Check to see if a 50 mM sodium phosphate buffer (pH 7.5) is prepared. If
not, see Appendix A.l for instructions on how to prepare stock solution.

2. Check to see if a 1 mM penylmethylsulfonyl fluoride (PMSF) stock solution is
prepared. If not, see Appendix A.2 for instructions on how to prepare stock
solution.

3. Determine how much extraction buffer will be needed for the day (Table B.1).
4. Prepare plant samples for extraction.

a. fill a styrofoam cooler with liquid nitrogen and place a metal tray directly
on the liquid nitrogen

b. prepare previously frozen plant samples on tray to allow samples to stay

cold

weigh out 0.2 g of plant sample into microcentrifuge tubes

add 1 mL of plant extraction buffer to each tube

e. centrifuge at 14,000 rpm for 20 min at 4°C. Note: when placing the tubes
into the centrifuge rack place where the hinge is pointed towards the top.

f. after the samples have been taken out of the centrifuge, place on ice and
transfer the crude extract (pipette the liquid from the plant tissue) into a
new microcentrifuge tube

g. pipette out enough crude extract from each sample for Bradford protein
assay, then place in freezer

h. remaining crude extract will be used for enzyme analysis

aoe

5. Determine which enzyme will be analyzed and follow protocol:

a. Glutathione Reductase - GSH
b. Glutathione-S-transferase - GS
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B.2.  Protein Extraction (Quick Start Bradford Protein Assay Kit, Bio-Rad
Laboratories, Hercules, CA)

1. Materials needed

e o o

96 well microplates

Vial of BSA that came with kit from Bio-Rad

Bottle of 1x dye reagent that came with kit from Bio-Rad
Package of 2 ml eppendorf tubes

2. Microplate standard assay

Take vial of BSA and bottle of dye reagent out of fridge and let warm to
room temperature

Take eight 2 ml eppendorf tubes and place in a rack

Then follow the protocol from Quick Start Bradford Protein Assay
Instruction Manual, Bio-Rad

Preparing standards (Table B.2)

Preparing samples (Table B.3)

Transfer standards and samples to microplate (Table B.4)
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Table B.1 Required amounts of stock plant extraction buffer and PMSF needed
to mix daily extraction buffer.

Bottle/Vial Volume Protein Extraction Buffer PMSF
(needed for analysis) (Stock Orange Lid)
200 mL 200mL = 200,000 W 2,000 w
100 mL 100 mL = 100,000 W 1,000 W
50 mL 50mL = 50,000 W 500
25 mL 25mL = 25,000 W 250 W
12.5 mL 125mL = 12,500 pl 125 ul
*100 units of Extraction Buffer to 1 unit of PMSF
*Ex. 1,000 ul extraction buffer requires 10 pl of PMSF
Table B.2  Bradford Protein Assay - Standard curve preparation.
Diluent
Tube # Standard Volume Source of V(()(l:::e [Pl:(l)ltlziln]
(uD)(vial from Kkit) Standard .
extraction (ng/ml)
buffer)
1 40 2 mg/ml stock 0 2000
2 60 2 mg/ml stock 20 1500
3 40 2 mg/ml stock 40 1000
4 40 Tube 2 40 750
5 40 Tube 3 40 500
6 40 Tube 5 40 250
7 40 Tube 6 40 125
8 (blank) - - 40 0

*Tubes 1 - 3 are filled with BSA Stock + extraction buffer(small vial from kit).

*To fill4 - 7:

tube 4 - take 40 pl from tube 2 and place in 4
tube 5 - take 40 pl from tube 3 and place in 5
tube 6 - take 40 pl from tube 5 and place in 6
tube 7 - take 40 ul from tube 6 and place in 7

Table B.3 Preparation of plant samples.

Dilutions Crude Extract
100% - + 150 pl sample
75% 37.5 WEB + 112.5 yl sample
50% 75 WEB + 75 W sample
25% 112.5 W EB + 37.5 yl sample
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Table B.4. Plate set up for Protein Determination.

A Volume of Volume of V(;lul;e of
ssay standard sample x qye
reagent
microplate 5 W+ 15 pl water 20 ul 250 ul
B.3  Glutathione Reductase Protocol [GSH (Esterbauer and Grill, Plant Physiology)]

1.

2.

Check to see if there is enough plant extraction buffer.

Check to see if there is a 1M Tris/HCL buffer (pH 7.8) prepared. If not, see
appendices A.4.

Check to see if a stock solution of NADPH is prepared in aliquots of 700 and
300 uL. (stored in the freezer at -20°C) If not, see appendix A.6.

a. NADPH stock solution
= NAD 700 or NAD 300

b. Decide how much will be needed based on how many samples will be run
(Table B.5)

c. Place tubes on ice

Check to see if a stock solution of Oxidized Glutathione is prepared in
aliquots of 350 and 225 pL, stored at -20°C. If not, see appendix A.7.

a. Oxidized Glutathione stock solution - blue labeled microcentrifuge tubes
(OG 350 or OG 225)
= 25 tubes have 350 puL and 4 tubes have 225 pL

b. Decide how much will be needed based on how many samples will be run
(25uL per well)

c. Place tubes on ice

Prepare stock solution of Glutathione reductase fresh (enzyme standard).
a. Glutathione reductase (GSH) is stored in refrigerator
b. Pipette 1.32 pL of GSH into 1 mL of our plant extraction buffer (bottle

with orange top + PMSF)
c. Place tube on ice

232



10.

11.

12.

13.

Standard Curve set up.
a. 8 tubes labeled S1 - S8 (Table B.6)
Get a UV microplate and determine the plate set up (Table B.7).

Mix reaction buffer containing BSA, Tris, and EDTA (leave enough room for
NADPH and leave on ice).

Have ready enzyme standard, plant samples, reaction mix (Tris, EDTA and
BSA), NADPH, and OG to and set up computer and Spectrophotometer for
340nm.

After set up of equipment, follow Table B.8.

a. Add standards, then plant samples to microplate and keep plate on ice
b. Add NADPH to the reaction mix, then add reaction mix to microplate

As the last step, just before reading the plate, add Oxidized Glutathione (OG
stock).

a. 25 uL per well
Read plate absorbance at 340 nm.
Save readings and write down name of file and directory saved.

a. File
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Table B.5  Glutathione reductase reaction mixture.

Volume 0.2 M 1% EDTA 8.4 mM BSA (stock)

Needed TRIS/HCL NADPH
4 400 pL 001 g 60 pL 10 WL
8 800 uL 0.02 ¢ 120 pL 20 1L
12 1200 uL 0.03 ¢ 180 pL 30 WL
16 1600 pL 0.04 g 240 L 40 pL
20 2000 pL 0.05 g 300 L 50 ul
24 2400 pL 0.06 g 360 L 60 pL
28 2800 L 0.07 g 420 ul. 70 pL
32 3200 pL 0.08 g 480 uL 80 uL
36 3600 pL 0.09 g 540 pL 90 pL
40 4000 pL 0.10 g 600 pL 100 ul
80 8000 pL 0.20 g 1200 pL 200 ul

Table B.6  Glutathione Reductase Standard Curve - 1:2 serial dilution

Tube Standard (Pure GSH)  Extraction Buffer = Protein uw/mL

1 100 - 0.6
2 100 100 pL 0.3

3 100 pL from tube 2 100 L 0.15

4 100 pL from tube 3 100 pL 0.075

5 100 L from tube 4 100 pL 0.0375

6 100 L from tube 5 100 pL 0.01875
7 100 pL from tube 6 100 pL 0.009375
8 - 100 pL 0
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B. 4. Glutathione-S-transferase (GST)

1. Make sure there is a 2 M potassium phosphate monobasic stock solution
(M.W. 136.09) and a 2 M potassium phosphate dibasic stock solution (M.W.
174.18), if not see appendix A.8 and A.9.
2. Determine how many samples will be analyzed and mix GST reaction buffer.
a. Check to see if a 3.6 mM reduced glutathione stock solution is prepared, if
not see appendix A.10.
b. Check to see if a 100 mM CDNB + EtOH stock solution is prepared, if not
see appendix A.11.
c. Then mix according to Table B.9.
3. Prepare standard curve.
a. Eight tubes (Table B.10).
4. Transfer standards and samples to microplate (Table B.11).
a. cover microplate with parafilm for 10 minutes prior to first reading, to
prevent oxidation
b. read plate every 5 minutes for 20 minutes to determine end point
5. Read plate absorbance at 340 nm.
6. Save readings and write down name of file and directory saved.
a. File
Table B.9  Glutathione- S -transferase reaction buffer.
Amount g;)ltas sliu:n Potassium Glutathione CDNB
Needed M OSPb A .e Phosphate Dibasic Reductase
(mL) onobasic
12.5 838 L 412 L 125 1L 125 1L
25 1675 uL 824 uL 250 uL 250 pL
50 3350 uL 1648 L 500 uL 500 uL
100 6700 uL 3295 uL 1000 pL 1000 uL
400 26800 L 13180 uL 2000 pL 2000 puL
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Table B.10  Glutathione-S -transerase standard curve

Tube Standard (Pure GST) Enzyme Extraction Buffer

1 50 puL -

2 100 pL 100 pL
3 50 ul from tube 2 150 uL.
4 50 ul from tube 3 150 pL
5 50 ul from tube 4 150 uL
6 50 ul from tube 5 150 uL
7 50 ul from tube 6 150 uL
8 - 150 pL

Table B.11  Glutathione-S -transferase plate preparation.

Plant Reaction
Assay Standards Samples Buffer
microplate 15 uL+ 5 L 20 uL 230 uL
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